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ABSTRACT

Ray has found an approximate first integral for

the motion of charged particles in static magnetic fields

not necessarily displaying axial symmetry. This involves

a canonical transformation to a new set of coordinates,

one of which is approximately ignorable.

In field models which approximately preserve this

new kind of symmetry, of which the geomagnetic field is

an example, a perturbation technique is here employed to

derive an improved version Ray's first integral. In the

technique, conservation of energy, adiabatic invariance

of the magnetic moment, Ray's first integral, and the

slow drift motion of the particles under consideration

are used as the zeroth order solution• The resulting

quadrature predicts the splitting of magnetic shells

in field models which do not display axial symmetry•

This result was first suggested by Stone but is unsatis-

y_ _ for

models of the earth's field which are severely distorted

because of the "Solar Wind Plasma" The improved first

integral is further used to derive a new method for

calculating Cosmic Ray cutoffs at the surface of the

earth. This method replaces the traditional St_rmer

theory and its refinements put forward by other authors.

xiii.
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INTRODUCTION

A-Charged Particle Motion

It is a most elementary fact that the motion of

a charged particle in a uniform magnetostatic field

is a helix. The component of the velocity parallel to

the field remains constant while the transverse velocity

components gyrate harmonically with (in cgs units) a

"Larmour Frequency" qB
m-_' q being the charge, B the magnetic

v2 -1/2
field, m the relativistic mass mo(l -_) and c the

C

speed of light. The speed and, therefore, the energy

of such a particle is constant. The radius of gyration

mcV x B

of "Larmour Radius Vector" is given by R_ - _ B_

and points from the particle to a ficticious point

called the "guiding center of motion". In this case,

it is simply the center of the circle. As the field

model becomes more comp]iested_ such as the addition of

transverse E field, or the addition of a slight transverse

magnetic field gradient or gravitational force, or a

curvature of the field lines or slight time variation

in the fields, we find that the mathematical 33 solution o_"

the trajectories still suggests the facility of a "guiding

center concept" provided that a "drift velocity" is now

introduced. This drift is in a direction mutually

perpendicular to both the magnetic field direction and

I



E (or VB, g, ... etc.). The necessary and sufficient

conditions for the continued validity of such a concept

is that the energy of the charged particle be sufficiently

low. When we consider a field whose lines of force converge,

the larmour radius and hence the transverse velocity

components increase (as well as the "Larmour Frequency")

at the expense of the velocity parallel to the field

since the energy is conserved. When all the parallel

velocity is expired, the particle is said to "mirror"

or reverse its spiraling motion then moving toward

more sparse fields while its guiding center approximately

remains on the same line of force as where it mirrored.

B-Adiabatic Invariants

Associated with this so-called "Allen Motion" are

a few approximate first integrals or adiabatic invariants

of motion. 33

The most important, and hardest to destroy, (as

the particle's energy is increased) is the "Magnetic
W

Moment", _ - B' W being the energy of the transverse

motion. This invariance rests on the fact that the

gyrating particle produces a dipole (or magnitude

current times area of larmour circle) which moves with

the guiding center of the trajectory.

The second approximate invariant, which is related

to the "action" of the parallel motion along the magnetic

field, is given by J = _p dE. It states that the guiding

4_ j "



center will be restricted to that set of lines of force

where this "Integral Invariant" is conserved. The

integral is performed along a line of force between

"conjugate mirror points". This gives rise to the

magnetic shells which will be discussed in the next

section.

There exists another approximate "flux" invariant

which will not be used in this thesis.

C-Magnetic Shells

Shortly after the first ionospheric rockets were

sent aloft, it was discovered that the earth's field

caused "trapping" of energetic charged particles. The

mechanism of such trapping was clear from the trajectories

of charged particles in, what was thought to be, an

I
approximate dipole field. Because of the above mentioned

adiabatic invariants_ the motion of tr_pped particles was

suggested 3_ to be Alf_ motion. This consists of the

particle gyrating about the guiding center while it

"bounces" between "conjugate mirror points" and slowly

drifts carrying the guiding center from line of force

to line offorce such that its integral invariant, J,

is conserved. The surface generated by this set of

lines of force is called a "magnetic shell". Mcll_ain realized

that a convenient parameter for labeling these shells is

the equatorial radius of a dipole line of force having



the same integral invariant, J, and magnetic moment, _,

that the actual field gave. This analysis, however,

rested heavily on the fact that the earth's field (from

surface measurements 7) was close to that of a dipole.

While this is approximately true near the earth, more

recent satellite measurements have undoubtedly disclosed

that the earth's magnetic field is severely distorted by

its interaction with Solar Corpuscular Radiatioh in the

form of the "Solar Wind Plasma". This necessitates a

much more accurate label for such shells in these

distorted magnetosphere models.

In this thesis we will give a method for labeling

these Adiabatic Invariant Magnetic Shells with a new

parameter "_" and show how particles with different

energies change the shape of the shells. The analysis

does not depend on the approximate dipole nature of the

earth's field. The resulting surfaces (equation IV-(83))

and their high and low latitude mirror point limits

(equation IV-(84) and IV-(85)) are derived. These

equations are then applied to a simple analytical model

in Section IV, and to numerical models of the magnetosphere

put forward by Hones 15 and Mead.26 In that section plots

are made comparing the shells predicted by J and _, by

equation IV-(83), (84), and (85), and by the poor

approximation of the McIlwain parameter.
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D-Cosmic Ray Cutoffs

By a similar error, St_rmer 51 assumed the earth's

field is dipole in nature. He worked out the motion of

a charged particle in such a field and discovered a

first integral of charged particle motion. From this he was

able to predict cosmic ray cutoffs (the rigidity below

which particles are not energetic enough to reach the

earth from infinity). Further corrections were made to

his theory 17' !8, 32 producing better but still not

completely accurate predictions.

In Section V of this thesis we work out a further

correction to a new cutoff theory first put forward by

Rayo 38 The resulting "Vertical Cutoff Rigidty" is

given by the equation V-(41). This result is then

applied to the Finch and Leaton 7 model of the earth's

field in section VII. The numerical results are then

compared to those previously predicted by Ray, Shea, and

Dropkin at the same observation points.

E-Expansion Parameters

In the following thesis perturbation theory

computations will be made on the assumption that (a)

The geomagnetic field is approximately independent of _;

(b) The Magnetic Moment, _, is approximately an adiabatic

invariant of motion; (c) _Trapped Radiation moves in such

a way that the additional "integral Invariant-J", is an

approximate adiabatic invariant of motion while the actual
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trajectory is closely approximated by Allen motion.

That the assumption (a) is correct, in a rather

broad sense, is phenominological in that the theory,

worked out in the zeroth order, 38 predicts, reasonably

accurately, the measurable results of trapped particle-

magnetic shells and cosmic ray cutoffs. The higher order

correction performed in this thesis predicts, even more

accurately, these same phenomena. The validity of (b)

is very accurate in the light of Northrup and Te!ler's 34

famous paper on adiabatic invariants. It is pointed

out in that paper that this is the most difficult invariant

to destroy for motion of charged particles in the geomagnetic

field. A6ain, from Northrup and Teller 34 and Allen I the

motion of trapped radiation, when the energy of the

particles is sufficiently low, is very well approximated

by a "spiraling" around a line of force, and a bouncing

and drift motion of the particles guiding center. Only

when we get to energies of the order of "bey" does the

Integral Invariant and guiding center concept no longer

have meaning.

Expansion parameters would have the form of:

(the B-dependent portions of field variables)/(the total

field variable); so that as the field becomes symmetric

in B as this ratio approaches zero.
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(zz) REVIEW OF PREVIOUS WORK

A- Description of the Field

A magnetostatic field may be described in the

following manner (see Brand 2 for instance). One may

always add the gradient of a scalar function to the

vector potential describing the magnetic field without

destroying any properties which are measurable. If

this scalar function is selected properly, we may

construct a new vector potential which satisfies the

gauge (see Appendix III)

• _ = _ " (Vx _) = 0 . (1)

This is the well known condition that the differential form

dl _) possesses an integrating factorA • dl (where --

_. It then follows

= c_VIB (2)

where _ and _ are independent scalar functions.

Since Vx (V_) = O, the magnetic field may now be

expressed as

= x . (3)

Furthermore, if we consider only those fields in

which spacial currents are everywhere perpendicular to B,

we have

7



B " _"

,J.

and by the same argument leading to (2), we may express

]3 as

B = _VV (5)

w

In harmonic fields, we may select _ = constant,

with no loss of generality, in which case "V" may be

interpreted as the magnetic scalar potential.

Furthermore, from (3) we have

In differential form, this may be written as

V_ • dl = V_ " dl = 0 (7)

which implies

d_ _ d_ = 0 (8)
dl _-f

That is, the functions _ and _ are constant along lines

of force of the magnetic field. Furthermore, (6) implies

that _V is perpendicular to both V _ and V_, ergo, v

is a scalar function independent of both _ and _.

The scalar functions _, _, V describing the field

are not unique. For instance, one description of the

field _, _, V may give a non-vanishing dot product

e • V_ _ 0, while a point transformation



1

_, = _'(_,_, v)

_, = _,(_,_, v)

v' = v'(_,_, v)

(9)

to a new set of functions _', _', V', which describe

the same magnetic field, may give a vanishing dot

product V_' • V _' = 0. A proof of this, derived

by the author, for all fields which vary in two directions

only, can be found in Appendix VI.

Geometrically _, _, and V surfaces would appear

as shown in figure I. "V" is a measure of "distance"

along lines of force. We may select "_" to be a measure

of distance from the source of the field (eg. a dipole

at the origin) in which case "_" will be related to a

measure of azimuth.

B- A Spherical Harmonic Description of the Earth's Field

The magnetic scalar potential describing the

geomagnetic field may be expressed a spherical harmonic

expansion 6,7,26,28

v(_,_,¢)= re n=l Tn (@, _)+(_n)Tn ((9,_I (i0)

D

where r is the radius of the earth in kilometers, r is
e

the radial distance from the center of the earth expressed
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Surface of constant "a"

Surface of constant
it V II

Surface of constant ",8"
Line of force
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in earth-radii, @ is the colatitude, _ is the azimuth

and V(r,@,_) is the magnetic scalar potential expressed

in gauss-kilometers. Tn and Tn in (i0) represent the

components of the field due to internal and external

sources of the field, respectively. They are given by

[gm cos(m_)+h_ sin(m_)_ Pn,m(COS@)

n

m=O
[g_ cos(m_)+_ n sin(m_)_ Pn,m(COS@)

(ll)

where Pn,m(COS@) are the Schmidt-Normalized associated

Legendre Polymonials and are defined in terms of the

conventional Legendre Functions as follows

Pn,m(COS@) = [2 In_I_ 1/2

Pn_o (cOs@) = Pn (c°s@)

P (cos@)
(12)

where Pn(COS@) are the Legendre Functions defined by 31

i d n (cos2@ - I) n (13)Pn (cOs@) = n ,
e n. d(cos@) n

while P_(cos@) are the associated Legendre Functions

defined by 31

Pmn(cOs@ ) - sinm@ dn+m(c°s2@ - l)n 14)
2nn: d(cos@) n+m " (
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m h TM --m _m are known asThe coefficients
gn ' n ' gn ' n

the "Gauss Coefficients" m hm are a measure of the
• gn ' n

sources which reside inside the earth while _n ' h_n

arise from sources external to the earth's surface.

All coefficients are measured in gauss.

The magnetic field is obtained from (I0) by taking

its positive gradient.

• °

_(r,@,_) = _V(r,@,_) . (15)

Hence the components of the magnetic field become

=
n=l

Bg(r'@'_) = n=l_ __n+21 Un(@,_) + _n-I _n(@,

c*D

= Yq,
n=l _ 1 Vn(@ _) + }n-I Vn(@ __9_+2 ,

(16)

where



• °

13.

n

< _mcos_m_l_ s_n_m__n({9'¢)= n n
m=0

dPn,m(COS{9)

d{9

cos(m_) + _m sin(m_n ({9'_) : n n d{9

n

m:O

Pn,m (c°s{9)

sin {9

(17)

nE- coslmVn({9,¢ ) = m gn n

Pn,m (c°s{9)

sin {9

dPn,m(COS{9)

The Pn,m(COS@) and the dO have been calculated

for the first 48 functions and appear in Appendix VII.

hm --m _m areIn addition the coefficients, g_ ' n ' gn ' n

tabulated in Appendix VIII for the field models of Hones 15,

Mead 26, Finch and Leaton 7 (geomagnetic coordinates) and

the Finch and Leaton field (geographic coordinates).

Since it is convenient to have ......o_i_ _-11_.-'--__a

Leaton fi@Id in geomagnetic coordinates also, the

following transformation was performed by the author.

The rotation relating geographic (unprimed) and geomagnetic

(primed) coordinates are given by _' = _, {9' = @'({9,¢),

and _' = _'(@,_). Placing this into equation (I0) we

have, by the theorem of "completeness"

v, - v,(},,{9,,¢): v(_,{9,(_,¢),¢,({9,¢)): v(_,{9,_)- v

(is)
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Equating coefficients of equal powers of _ in (18) we

obtain six sets of linear equations relating the g,m
n '

h 'm to the gn- ' hm which may be solved for the new setn n

of coefficients. The calculations were performed on

the Control Data 1604 computer giving the resulting

Gaussian coefficients appearing in Appendix VIII.

C- The Lagrangian

The Lagrangian of the motion of a charged particle

under the influence of a static magnetic field is given

by

__ _ m 2 ---q--v2 v + c A

where (19)
2

m -- too(1 v2 )-1/2
C

is the relativistic mass, v is the velocity and A is the

vector potential of the field. For the static magnetic

field, the validity of (19) for relativistic particles

is proven in Appendix I. The only proviso that must be

kept in mind when deriving the Lagrange equations from

(19) is that the mass m must be considered a constant

and not differentiated.
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D- The Transformed Lagran@ian and Associated Equations

of Motion

The independence of _, 6, V has been utilized by

Raf 8who has suggested that these coordinates be chosen

as a new set of spatial coordinates for describing

charged particle motion in a static magnetic field.

The utility of such a transformation will become evident

shortly.

Following Ray 38, we make a point transformation

on the spherical (or cartesian) to the _, 6, V system, ie:

x = x(_, 6, v)

y = y(_, 6, v)

z = z(_, _, v)

(20)

The canonically conjugate velocities are then

(see Appendix II) expressible as

x = x(_, 6, v; _, _, v)

y = y(_, 6, v; _, _, v)

z = z(_, _, v; _, _, v)

(21)

The Lagrangian (19) may then be transformed to the

new canonical coordinates (see Appendix II).

(az)

where, again "m" is the constant relativistic mass moT,
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while V a , V6 , and B are all functions of _, 6, and

V only.

The equations of motion corresponding to (22) are

now the set of Lagrange's equations

dt ( ) - _ - 0 (23)

d _ 8Y_ (24)dt ( ) -_--_ -0

d _ 8£dt ( ) - _ = 0 (25)

subject to the initial conditions _o' 60' Vo' &o' _o' Vo

E- First Integrals

One obvious first integral of (23) - (25) is the

conservation of energy. This is clear from the fact

that the Lagrangian, and thus the Hamiltonian, does not

explicitly depend on the time and is therefore conserved, ie:

E = constant (26)

We may now replace any one of the equations (23) -

(25) by the first integral (26). The set of equations

determining the motion of the charged particle then becomes

p2 2 2 J4 1/2 c 2E = ( c + moC ) - m ° = constant (27)

d ax 8Z (28)d-T (_-) - _r-= o

d 8_ 8Z
d-T (_--) - _ : o . (29)
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• °

., |=

Whenever the rigidity is sufficiently low (the

rigidity is defined as R= mvc] equations (27) - (29)
q -

may be combined to yield another approximate constant of

the motion known as the magnetic moment "_". Once again

we may replace (28) by this first integral yielding the

description of the particle motion as

2 4 1/2 c2
E = (p2c2 + moC ) - m ° = constant (30)

2
p_ w_

- B B constant (31)
2m

O

d 8X _£ - o
dt (_--) - _-_

note: p=mv

p_ = mv±

2
p_

W_ - 2m
0

(32)

F- A New First Inte@ral

Consider equation (32). First let us calculate

and _ . We have from (22)

%5 _ B2

7

-2 • •i_2 ) (33)
J

• and
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Clearly, a sufficient set of conditions for _ to

vanish in (33) is the independence from _ of IVcl ,

I_I, _ " _, l_c x _I The restrictions this

places on..the form of the magnetic field is derived by

the author in Section VIII.

_
When, in fact, _- 0 we have a new first integral

of the form derived by St_rmer. 51

Suppose that we consider a magnetic field of such

a form that, when we define a as a particular function

(constant along lines of force) and construct the

corresponding _ from the solution of the P.D.E. ('3), we

find l_cl , I_BI , _ V_, IV_ x _B , are approximately

independent of B. It follows, from (32), that p_ is

correspondingly "approximately" conserved. It was in

this way that Ray 38 showed that, for the earth's field,

we have a new approximate St_rmer first integral

m IIV_I2B2 _ (_B2 _ I + cq-_: 2q _ =c°nstantc
(35)

The special case of the set of all axial symmetric

harmonic fields give rise to the St_rmer Integral (35)_

exactly. For such fields we may always choose

: r sin @ A_(r,@)
(36)

= i (37)

L': °"
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Taking the gradient of (36) and (37) we find, in fact,

_ • _ B are all _-independent,that

ergo, we have an exact first integral.

It is intuitively obvious that fields which display

a close to axial symmetry, also exhibit an approximate

St_rmer Integral. The geomagnetic field is such a case.

The model determined by surface measurements of the

magnetic field lead to a spherical harmonic expansion

involving only inverse powers of the radial distance from

the center of the earth. The "Gaussian" coefficients of

such an expansion have been determined by several inves-

tigators (see, for example, Finch and Leaton7). The

most important property of such an expansion is that the

leading term, the dipole term, is axially symmetric and

very large compared to subsequent terms. This naturally

suggests the field displays an approximate axial symmetry,

a sufficient condition for the existence of an approximate

St_rmer Integral.

Other models of the earth's field 3_4' 15, 26, 27, 28, 3o

determined from satellite measurements and theoretical

considerations, give rise to a spherical harmonic

expansion which includes positive power_s •of the'rad_ial distance

from the earth (due to external sources, eg: ring

currents, solar wind interface currents) in addition to

the inverse powers of radial distance which arise from

internal sources (molten iron motion) within the earth.
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These models demonstrate a highly non-axial symmetric

field in the shape of, crudely, a paraboloid with its

axis of symmetry passing through the sun. This cavity,

formed by the interaction of the "solar wind_" charged

particle nature and the earth's magnetic field forms a

cavity which is generally referred to as the magnetosphere.

Even though these models display a vast divergence from

axial symmetry, Ray 38 has pointed out that corrections

may be added on to the approximate first integral (35)

to make it applicable to trapped radiation and cosmic

ray motion in the magnetosphere.

G- Trapped Radiation

(i) Adiabatic Invariants of Motion

Trapped radiation of sufficiently low rigidity

will display two imPortant adiabatic invariants of motion.

The first is known as the "magnetic moment", _, and

the second is known as the "Integral Invariant", J.

The magnetic moment is given by 33

2
p±

 -2m B
0

transverse

where p_ is the particle's_relativistic momentum, m o is

its rest mass, and B is the magnitude of the magnetic

field at its guiding center of motion. The magnetic

field is assumed constant over the Larmour radius of

the gyrating particle. The trapped particle therefore

behaves like a tiny dipole of magnitude "Z" moving in a
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stronger magnetic field.

In a static magnetic field (p =constant) the

following integral is conserved at the guiding center

of trapped radiation. 33

J
I--

-- p

12(Bm)

-_ _dl=2p # (l- B/Bm)l/2dl (39)

ll(B_)

where p is the relativistic momentum, B is the magnetic

field, B is the magnetic field at the "mirror point",
m

and the integral is to be performed along a line of

force, upon which the trapped particle's guiding center

resides, from the lower mirror point, ll(Bm), to mirror

upper point, 12(Bm).

(ii) A New Adiabatic Invariant

All models of the geomagnetic field are assumed

independent of time. This implies that the functions

_, _ and V do not explicitly depend on the time, ie:

$_ _v
%-[ = _ = Z-_ = o (_o)

so that the total time derivatives of _, B and V become

&=v V_

-_ _=v" V'_

=v" _V-

(_l)
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Placing (41) in (35), following Ray 38, we have

-t- c_ = 2v (_-2)

Using some vector algebra and (3), we may transform

(42) to the following form

m

c_ + ac V_ = 2v (_-3)

where "_c" is the Larmous radius of the particle pointing

from the particle to the guiding center, (see figure 2) ie:

-_ mC(V Xa

c- q B2 (44)

and all lengths in (43) have been expressed in St_rmer

units which is the unit length c _ (M/R)I/2; "M" being

the dipole moment of the earth (in gauss-kilometers 3)

and "R" is the particle_ rigidity expressed in gauss-

kilometers.

If the rigidity of the particle is sufficiently

low (ie: low energy), then "a " is also small as a con-
C

sequence. Under these circumstances, we may interpret

(43) as the first two terms of a Taylor expansion of

about the position of the particle and determined at the

particle's guiding center. If we call the value of
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at the particle's guiding center
C _

for these low-rigidity particles, that

m

= 27 = constant
C

then (43) implies,

That is, the guiding center of such a particle will

approximately travel on a surface of constant "_".

Since _ is defined constant along lines of force

and it is an approximate constant of motion at the guiding

center of particles of low rigidity, it serves the same

function of describing the "invariant shells" of trapped

particle radiation as does the Mcllwain 25 "L" parameter.

In fact, in the case of a dipole field it is easily

shown 38 that "_" is related to "L" by

2 (46)
=

The advantage of using "_" instead of "L" is that it

may be chosen as a function of the magnetic field only,

and does not depend in any way on the properties of

charged particle motion. For any specific field model

we may proceed to map _ - constant surfaces never making

mention of the particle trajectories. In fact, just

such a mapping has been done for the Finch and Leaton

model of the magnetic field of the earth by Stern. _9

_ - 0 which,
(45) was arrived at by assuming

in fact, is not the case for models of the earth's field.

As a manifestation of this, the phenomena of "shell splitting"



(discussed in next section) has been neglected in

(45). This necessitates carrying out the new first

integral to one higher order of approximation.

(iii) (I,Bm) Invariant Magnetic Shells

Particles with sufficiently low rigidities

satisfying the conditions for use of the Adiabatic Invariants, (38),

(]9)_can be described as having their guiding centers lie

on shells described by the label (I, Bm). The description

in terms of "B " arises from the invariance of the
m

magnetic moment during the entire motion of the par-

ticle and, in particular, at the mirror point where

2 2
p_ = p

Physically, the Invariant Shells arise from the

fact that the motion of a trapped particle is a spiral

about its guiding center (of magnitude equal to the

Larmour Radius) while the guiding center "bounces" along

a line of force from mirror point to mirror point while

slowly drifting perpendicular to both the direction of

i
the magnetic field and its gradient.

If we had assumed that the earth was a pure dipole,

two particles having different mirror points but starting

on the same line of force would both remain on the same

invariant shell 21 (see figure ]). The surfaces in this

dipole field are generated by sweeping out the surface

generated by swinging a line of force 2_ radians in azimuth.
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Although both guiding centers of the particles (Ii, Bml)

and (12 , Bm2 ) reside on the same surface, one sweeps

out a larger area of the surface than the other.

The (I, Bm) labelling of shells hence has an

immediate disadvantage of in no way indicating that two

obviously topologically equal shells indeed lie on the

Bml )same surface. That is, given (Ii, ) and (12, Bm2

we cannot tell, without actually plotting them for the

particular field model, that they lie on the same surface.

If a small perturbation is now applied to the

dipole field so that it loses its axial symmetry, the

previously "degenerate" shells now "split" as was pointed

out by Stone. 50 Referring to figure 4, we see that,

in this case, the two particles whose guiding centers

start on the same line drift in such a way that their

invariant surfaces diverge only meeting along the original

line on which the two started. The "degeneracy" has

now been removed.

(iv) The Mcllwain Parameter

Another way of labelling the invariant shells has

been proposed by Mcilwain. 25 It has the advantage of

labelling degenerate shells uniquely.

If we refer to (39) placing the dipole field in

the right side of the equation, ie:

= Hr3 + sin (47)(2 cos 
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and integrate it along the dipole line of force

R = RD sin2@ (48
O

we may find an expression relating 'rIrr to _B and RD I

O
Ie:

i = Z(Bm,_D ) . (49)
O

This is a rather complicated expression which must be

performed on a computer. However, in principle, we may

"invert" (49) to obtain, if only as a numerical table,

the relationship

RD (Bm,z) (50)o = RDo "

We then assume that some function "L" exists which satisfies

(50) for "I" computed in the actual earth's field eg: the

Finch and Leaton model)

B = _D (Bm'Z) (5l)
0

where RD is the same numerical function as in (50)
0

calculated using the dipole field. Hence "L" is defined

such that it would be the equitorial radius of a shell

with (l,Bm) had the particle been moving in a dipole

field. (51) defines "L" to be a constant of the motion,

and, further, through Mcllwain's use of the computer he

,I L"showed that, indeed, is very close to constant along

lines of force of the actual earth's field.

This pleasing method of labelling has two short-

comings, however. First, the functional relationship (51)

is numerical, not analytic, and second, more important,

there is no guarantee that "L" so defined would be constant
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along line of force of a field as distorted as the solar

wind cavity.

H- Cosmic Ray Cutoffs

(i) Definition

The "cosmic ray cutoff" at a particular point on

the surface of the earth in a particular direction is

defined as the lowest rigidity particle that may arrive at

that point, in that direction, from a source outside the

earth. The direction of arrival is usually measured with

respect to the zenith. The minimum rigidity arriving vertically

downward along the zenith is known as the "vertical cutoff

rigidity. "

(ii) Experiments

Mappings of the cutoffs obtained by experimental

techniques have been tabulated by several authors (see,

for example, References 8,9,10,20,23,24,35,41,_4,45,_6,52).

The discrepancies ......... _ ..... __ _T _tnf_

expected in a pure dipole field (St_rmer Theory) and the

actual field of the earth were evident from neutron lati-

tude surveys (Kodama et.al.,20 Skorka45) and at higher

altitudes by Simpson. Further evidence arising from

measurements of alpha particles was demonstrated by

McDonald,2% and Waddington. 51

(iii) Computer Simulation

Several investigators have calculated the vertical

cutoff rigidities at points at the surface of the earth

by simulating the trajectories of charged particles in
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a model of the earth's field more detailed than the

dipole (eg. Finch and Leaton). 7 The method is simply

the ejection of a particle, with a given rigidity,

along the zenith of that particular point in the simulated

earth's field. The orbit is then traced. If it is

found to return to the surface of the earth, the com-

putation is repeated with a particle of higher rigidity.

This is continued until the particle just escapes to

infinity. This is the vertical cutoff rigidity for that

point on the earth's surface. 17,15,92

(iv) St_rmer Theory of Cosmic Ray Cutoffs

St_rmer 91 treated a charged particle in a dipole

(47) field. After the equations of motion were set up

and properly transformed to a useful set of coordinates,

in addition to the conservation of energy first integral,

another first integral of motion was found. This was

expressed as, in St_rmer units,

sin - + R_! (52)
R' r 3

where R' = r sin @, "7" is a constant and "co" is the

angle between v and the "azimuthally sweeping plane's

normal" which is pointed in the v_ direction (see

figure 5). Since the energy is conserved for this

static magnetic field, so is the speed "v". Therefore,

(52) is a constraint on the _ component of the velocity

in terms of the position of the particle. From this first
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integral St_rmer was able to show that for a given 7,

certain regions of this azimuthally sweeping plane

(rotating with v_) could not be reached for the values

Isinc01 ) i. This separates the plane into "allowed"

and "forbidden" regions. The bounding curve between

the regions is determined by setting [sine01 = i in (52),

while the allowed region is found when [sine0[ < i.

Three typical "St_rmer" plots are shown in figure 6.

The value of 7 changes the characteristic shape of the

plots. When 7 is smaller than i, the "jaws" of the

figure are open leaving an allowed region which stretches

from _ , up the "horns" of the plot to the origin.

For 7 just equal to i the jaws just close, allowing no

trajectory to pass from the "outer" allowed region to

the "inner" allowed region and, hence, not to the origin.

When 7 is greater than i the two allowed regions are

separated by a forbidden region. The case 7 = i is

called the "critical" value of 7 because this is the

condition under which cosmic rays are "cut-off", ie:

cannot hit the surface of the earth. Since the plots

in figure 6 are in St_rmer units, the radius of the

earth is a circle about the origin whose radius depends

on the particle's rigidity. A superimposed circle is

shown in figure 6b.

Placing the value of 7 = I in (52), restoring cgs

units from the' St_rmer units, we obtain an expression
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for the cut-off rigidity at the surface of the earth

(r = re) as a function of the colatitude (@) and the

impact direction (with respect to the zenith) of the

particle, (_). This is

EM - (i - sine sin3@) (53)
Rcut - r2 sin@ sin_o

e

)

where
M

2
r
e

- 1.971 x 103 gauss-kilometers.

(v) Refinements on St_rmer Theory

Since the dipole approximation of the earth's

field is poor the vertical cutoff rigidities predicted

by St_rmer theory (eq.(53) with _ = O) are not comPletely

accurate. Several methods have therefore been devised

to predict more accurate results.

One technique put forth by Ray and Sauer _2'43

rested on the fact that the sixth order harmonic expansion

model of the geomagnetic field had the property that it

became, approximately, that of a dipole beyond 4 earth

radii. A particle emitted along the zenith, with a

given rigidity, was then traced using the properties of

Alf_n motion in this "near zone" until it reached 4

earth radii. At this point its velocity and angle

of incidence was computed. This now served as the

initial conditions of a charged particle in a dipole field,

l-o .



35.

thus allowing the use of St_rmer theory to predict the

cutoff.

Another method suggested by Quenby and Webber 36

with further refinements given by Quenby and Wenk 37

was to treat high and low latitude zones of cosmic ray

impact separately. In the high regions, the actual

field line is traced to the equator (now in the region

where the field is approximately that of a dipole).

At this point the dipole line is found thus giving a

latitude where it intersects the earth, which may now

be used to give an equivalent cutoff rigidity when this

is placed back in (53). On the other hand, at low

latitudes, a more complicated analysis is given 36 with

the result of an expression for the cutoff that depends

on the actual field components at the point, the dip

angle, and the latitude. The region of validity is

a band of 20 ° about the equator. The region between

the high and low approximations are extrapolated from

the previous results. A further investigation along

22
this line was carried out by Makino.

(vi) A New Approach to Cutoff Theory

Equation (35) may be written in still another

way 38

Iwl cos + = 2¥
B
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where everything is expressed in St_rmer units, and

"4" is the angle between v and B x V_. This equation

may be restored to cgs units whence we may then solve

for the cutoff rigidity (with _c = i), yielding

i

Rcut=_ _ -2M c ± __ 2

• _c Ival cos
7-- 2 MB

C_

(55)

Whenever the field is approximately independent

of "_" (55) is a good first approximation to the cutoff

rigidity. However, because of the slight perturbing

effects of a field with "5" dependence, the "--7c"

given in (55), instead of being i, is somewhat greater

or smaller than i depending on the second order correction

that will be worked out in section IV. The field variables

in (55) are all evaluated at the position of the particle

as it impacts the earth's surface. The small correction

in " " will just be sufficient to close the "jaws"
7cut.

of the equivalent St_rmer plot (see figure 6b).



(III) THE SECOND APPROXIMATION

TO THE LAGRANGE'S EQUATION

A- The New Form of the Lagrange's Equation

Consider a particle of charge "q" and rest mass

"m " moving in a static magnetic field which is almost
O

"B" independent. We showed in section (II) that its

entire motion is described by equations II -(31, 32, 33)

which are repeated below

E = (p2c2 + m2c4) ½ - m c2
O O

2
PL Wa-

- - constant
_-2mB B

O

= constant (I)

(2)

d _ o (3)dt ( )-75

where "_' is the relativistic momentum of the particle,

"W" is the total energy, "_ " is momentum component per-

pendicular to the magnetic field at that point, and "B"

is the magnetic field at that point. We will now proceed

to correct the first integral 11-(35) by the inclusion

of the _ term in (3) where, previously, it was assumed

a completely B-independent field. Since we are considering

current-free regions of space _ = i in 11-(22). Using

this fact-, we may now take the partial derivative of

11-(22) with respect to _, yielding

37
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+ _(7) -

(_)

• °
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Our method of calculating corrections to the

first integral will rest on the application of perturbation

_ term is small we
theory. That is, assuming the _

will inject the "first order motion" into this correction

term thus yielding higher order corrections to the

resulting equation. This is no more than an iteration

process.

Let us begin by placing II-(41) in (_). We then

have, placing the result in (3),

o g-_ _--) 7 ( )(_'" v°_)2 + (lYe4 2
B2

-'--I

_ _(w_2 _B)(-_ w) (_ v_)lj (5)_(_)_B'-I (1" • _)2

)(_,. v_)2

B- The Perturbation Theory Approach

(i) The First Order AlgSn Motion

The first order motion that we will insert in

the right hand side of equation (5) is the so-called

t
Allen motion of a charged particle in a magnetic field.

We are tacitly assuming that the energy of particles

under consideration is sufficiently small that the motion
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of these charged particles is a spiralling motion about

a line of force in addition to a "bouncing" motion from

mirror point to mirror point and a drift motion due to

gradients in the magnetic field (Alf_n 1 Chandrasechar 5)• •

A sufficient condition that must be satisfied for the

I

Alfen regime to be applicable is that

ac • VB

B
(6)

be sufficiently small compared to the nominal value of

"B" over a Larmour circle, a is the Larmour radius

defined by II-(%_). (Note:

the relativistic mass, mot ).

C

"_' in this equation is

Since we are treating particles that satisfy

the Alf_n regime, we may, therefore, express the

instantaneous velocity appearing in the perturbation

(the second term of the right hand side) term of equation

(5) as made up of a parallel and perpendicular component

to the instantaneous magnetic field

(7)

where the perpendicular component alone may be broken

into two components, the part due to spiralling and

another part due to the drifting of the particle

(8)vI = vD + Vro t
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During Alfen motion, the guiding center does not

move significantly during the time associated with a

Larmour cycle so that the rotational speed in (8)

is much larger than that due to the combination of

parallel and drift motion. A typical Larmour cycle of

this particle is then pictured as the path shown in

figure 7. The total guiding center motion and rotational

velocity is then given by, respectively, (as shown in

the figure)

(9)
R=_, +v D

a = Vro t (i0)

The time interval considered in the figure is

ti <_ t <- ti + T I (ii)

where the Larmour period is

- (12)qB

(ii) Avera6in 6 the Lag<ang_'s Equation Over a

La rmour Period

We will now proceed to average equation (5) over

the characteristic Larmour period which is, in fact,

appropriate for invariant motion. Our procedure will

be to first expand all field variables about the guiding

center and then time average the result over a Larmour

Period.

• .
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Referring to figure 7 let us now Taylor expand

and _ about the guiding center, "c",

,,°

, • + _(_) (13)_(x(t),y(t) z(t)) = _c + r<t) V_ c

_(x(t),y(t),z(t)) = Bc + r(t) • _7_c + _(X) (14)

where "_" is a "smallness" parameter and _(t) is the

instantaneous value of the radius vettor. The gra@ieflts

of (13,), (14) are found, simply by taking derivatives

with respect to x,y,z of (13),(14) yielding

V_(x(t),y(t),z(t)) = V_ c + a(h) (15)

_TB(x(t),y(t),z(t)) : V_c + o(h)

and _ is obtained by placing (15),(16) in II-(3)

-_ VCZc VB c BeB = w × v_ = x + _(_) =-"

(16)

+ _(_) . (17)

Since the guiding center does not significantly move

during the period of one Larmour cycle, the radius vector

measured from the origin of the local coordinate system

_(t) can be replaced by its projection on the V_ c,

Bc x ?_c plane, ie:

?(t)_ _(t) . (18)

Placing (18) in (13) and (14) and dropping terms of

order "h" in (13) through (17) we may now proceed to

calculate each of the terms in the second term of the
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right hand side of (5). We have

_( Iv61 2 _ x w Iv_l 2B2 )-- 3 v( B2 )=

So

Bc x Vct c

B2
C

2

 (Iv l 2 Iv olB2 )= _( B2 ) + _(x)
C

(_o + _(_))x (wo + o(_)

v(Iv ol
B2 ) + a(_,)

C

(20)

In a similar manner we may calculate

2

Ivcq2 I ) + _(x)_( B2 ) = _(IWOB2
C

(2l)

Vac VI_c

._..__(VC_B2" Vi2,) = .y_-( B2 ) + o'(_.) (22)
C

I _ i

_(--y-) = _(--_-_-) + _(_,)
C

(23)

/ \

Let us now define the symbol _ t_
average over a Larmour cycle as

for the time

i rti +T£(Q) (2_)

i

Placing (13) through (17)and (20) through (23) in (5)

in addition to replacing the velocities by (7), (8)
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we have, in the notation of (24), the Larmour cycle

time average of (5)

= ts_ \ r.,.

(25)

In (25) we have removed all functions which are approximately

independent of time from our time averages.

Since "Bc" is perpendicular to both V_ c and VSc,

we have

%' w c : v,,.v_c : o (26)

Furthermore, we have in addition

_ - _ _ = o (27)v± Bc = (Vro t + VD) Bc

Hence, placing (26) and (27) in (25) it simplifies to
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(28)

where we have integrated over all functions that are

approximately time independent over a Larmour cycle.

The remaining rotational velocity which is time

dependent (_rot) may now be expressed, over one Larmour

period as

Vro t -- Vrot(Sin(COc(t-ti) ) e + cos(C0c(t-ti) ) e_v_j(29)

where
C

is the Larmour frequency and is given by

qB

_ c (30)_c mc

If we now use the identities

(c°s(COc(t-ti))) T_ = (sin(_c(t-ti)))T_

sin(C°c (t-ti))c°s(COc (t-ti))) T
= 0
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and

(sin2(c%(t-ti))> T, < > := c°s2 (me (t-ti)) T£ 1/2 (31)

we may reduce the time averages in ([8) to

(32)

2
We now may further manipulate the terms involving Vro t

as follows:

2

Vrot

(V_ c

,,_oi2 !_cl2
lWcl2 _( B2o)+ Iv_o112_( B2c) -2@_o

V(z
C

B2
C
jV_c = v2 i

rot Z

C

+2

Wc

m

V_c) _(_)
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_Bc 4 _Bc 2 2 I_jc _y__._--- (_--j _-_ Bc --_) Vro t =-Vro t

Furthermore, from (7) and (8) we also have

(33)

2 2 2
v,, =v -v_

2 2 2
v_ = Vro t + vD

placed _ _,,
which may be_in (32) in addition to using (33)• We

then have 1

__ _ me

q d-C(_ - T_ 2q _ + 2q Bc

(34)

(35)

mc [_ V_c V_c i V_c')
C

(36)

The first term on the right hand side of (36) may be

further changed into a simpler form by introducing the

magnetic moment equation (2) in the form

2 2
2 2

m v. m v

b - 2m B - 2m B
o c o m

(37)

into it. The first term then becomes
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m c

VB
C

--v_ w c (38)

where we have recognized the definition of the drift velocity 19

-_ _CBm IP i ] (< x VB c)
VD - %q Bc Bm c

B2 (39)

,-Q

"_" being the magnetic moment, and "B " the mirror pointm

magnetic field of the drifting particle. The important

thing to be noticed here is that the drift velocity

vD is recognized from the equations of motion as a

natural consequence of the Larmour cycle averaging.

Placing (38) back in (36) we now have

c d _ + B ,_D
q dt(_-) T_ c 2_ c L _-- c

_m

)21 I ,-;pko]eXT_ _¢

(_o)

where all small _'s denote unit vectors in their respective

directions.

L



(iii) Simplifying Approximations

We will now proceed to show that we may neglect

terms (III) and part of (II) in comparison to (I), on

the right hand side of (58). First consider the ratio

of term (llI) divided by term (I).

VD IB ^- 2_ c c(eD

(b)

We have

,,., ,_ I V6c L w c v<' 1

( B2
c

but we may majorize both terms on the right hand side

of (41) as follows. Term (a) is always smaller than

] i2)

while term (b) is always smaller than

= 2 (42)

B2 _Z-
C

B
C

vD
Now, the ratio

LO
C

guiding center moves during the Larmour period.

(43)

is no more than the distance the

Thus,

using (42) and (43) in (41) we see that the right hand

side of (41) is smaller than the sum of the change in
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'rB" at guiding center plus the change in IV_I at the

guiding center during the period of a Larmour cycle.

This indeed is much smaller than unity. Hence it is

clear that we may neglect term (Ill) in comparison to

(I) in (_0). That the same is true of part of term

(I!) is seen from what follows. Neglecting (III) in

(40), term (If) may be manipulated so that the

resulting equations becomes

_ = vD
q T_

2
vD

V_ +
c 2_o

c

B
c

(44)

Again, we may show thatVthe second term on the right of

(44)_(lia)_is negligible compared to the firstVby noting

2 vD (< × w ) vbVD $Bc _ c c

2_ c _ 2_ c VD B2

and, because vD is in the B x VBc c
direction, this becomes

2oo
c (l_cl )Be

(_5)

so that the ratio of term (lla) and term (I) of (44)

becomes
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2 (eD ev_ c
m

I- (ev_ c eqB c) (46)

Since V_ c and V6 c are never parallel, the right hand

side of (46) is smaller than some majorized constant

times (following the previously mentioned argument) a

factor which is the percent change in the magnetic field

at the guiding center during a Larmour cycle• This again

therefore is a very small quantity compared to unity. _ The

resulting terms of (44) may then be written as

(47)

In equation (47), that the second term on the

R.H.S. is small compared to the first in all regions

= O)except those near the equator (where vD V_ c

may be seen by writing the second term as

Except for the factor of cosine between vD and V_ c

(which, of course, is smaller than unity) it is clear

that this term is smaller than the first term (R.H.S.

of (47)) by the factor in the above bracket. As was
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previously mentioned, this is approximately the change

in IV_I, at the guiding center, during the Larmour

drift period; which is small compared to unity.

Thus, barring small regions of space around the

is
magnetic equator, the Larmour cycle average of _--

given, by the next approximation, as vD V_ c. That

this is in fact very reasonable is clear from the

realization that, for particles of sufficiently low

c _ (the value of "_" at the guidingrigidity, _ _ _c

center) and its rate of change, with respect to time,

is given by

it _t

where _t = 0 because we are only considering static

fields, and v c is the guiding center's velocity. The

component of the guiding center velocity which

survives in (49), since _ V_ c = O, is no more than

the drift velocity, v D, and hence the time average

d (_) should be like vL V_c; the answer we obtained•of _
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C- The Resulting Time-Averaged Lagranges Equation

The result we have obtained so far may be summed

up as follows. The Lagrange's equation (3) which lead

to a first integral in the first approximation of a

slightly B-dependent field 38 is now corrected, in the

second approximation, to read

%v%

(5o)

so long as we only consider the equation valid during

time intervals large compared to a Larmour period.

The terms on the right hand side of (_O) are all evaluated

at the particle's guiding center, and the second term

may be neglected except for particles mirroring near

the magnebic equator.

Further, (50) makes clear the fact that as we

approach closer and closer to a field which displays

_-sy_metry the right hand side of (50) approaches

zero thus yield the result of Ray. 38 That this is true

is seen from the employment of (39) and some algebra to

show the first term on the right hand side is proportional

 lwol
to _--, while the second is proportional to _

both of which vanish when the arguments of the derivatives

become independent of _.
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D- Expansions of the Field Variables

Deeper insight into the problem and a path for

further calculations is made by adopting a perturbation

theory approach and expanding the field variables in

Fourier Series in _. Since it is only this divergence

from _-independence which destroys the exactness of the

38
first integral of Ray, the correcting term may now

be made to display its dependence on the non-axial

symmetric components of the field.

In Appendix X we show that _ is a measure of

azimuth and is therefore functionally related to the

angle _. Since _ will be chosen as a function of the

minimum value of the magnetic field along a line of force,

it becomes a unique label for topological shells in

space. Since these surfaces of constant _ are concentric

and generate the space it follows that IV_I is a single-

valued function in space. The magnetic field, B, is

also a single-valued space function in addition to being

IS
continuous. We may therefore define a period of B as

(in general a function of _) (see Appendix IV)

f f
cycle I cycle

where

---_ BxV_dx = dx . (52)
B IwI
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The integral is to be performed once around the curve

defined by a given constant a surface and any constant

V surface intersecting it.

We may therefore expand B and IV_I as Fourier

Series' periodic in P_(_). The leading terms of these

expansions will capture the approximate independence of

_, while the remaining terms will give higher order

_-dependent corrections. We start with

VCC = IVct(cz,_,V)levct(_,_,V)

B(_,_,V) ^= e_ (_,_,V)

(53)

(54)

and make the expansions

._ in_lwl: ao(_,V)+ an(Ot,v ) _P_-_ (55)

n_O
I"1=-c_

m= _o im_

B = bo(Ct,V ) + _ bm(°t'V) C_ (56)

m_O
m: -_0

where a and b are given, in terms of the actual field
O O

variables, as

ao(_,V) : Iv_l = lwI_ : _ _ dx

dx

(57)

• (5s)
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Furthermore, in the spirit of perturbation theory, the

fields having only slight _-dependence implies that the

leading Fourier Series component is much larger than

subsequent B-dependent terms, ie:

_-_o
(59)

t'_ ".t-O

_=-QO
(60)

This allows us to express the actual fields (53) and

(54) by the approximate perturbation expansion

(6l)

B "_
-----( B _B

where

(62)

h_-o

(63)

m_o
t_:-oO

(64)
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Return now to the result obtained in equation (50).

As is pointed out in the paragraphs following this

equation, the te_ms on the right hand side are proportional

c
to_-_--and 06 _ respectively. In the light of (61)

and (62) it is now clear that, if we only consider the

leading B-independent terms of our expansions the correction

terms on the right hand side of (50) are zero giving

Ray's result. 38 It is now further clear that the only

things that destroy this first integral are inherent

in
in the magnetic field itself and not_the particle's

motion.
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-(ovli)=v I

A- Guiding Center Motion

We will first consider particles which have

sufficiently low rigidity that they are trapped by the

magnetic field. The naturally formed Van-Allen Belts

and the injected charged particles of the Argus experi-

ments are examples of trapped radiation.

It is important to realize the second order

correction (the right hand side of (50)) need only be

computed along the trajectory that the charged particle

would have taken in a field which was B-independent;

ie: the B-independent field assumed_to obtain the first

approximation. That is, we must substitute into the

right hand side of (50) the guiding center trajectory

of a charged particle in the field made up of the

leading terms of the Fourier expansions of the actual

field (given by the first terms on the right hand side

According to Alf_, 1 this is given by

B o) (1)

B(o)'
c ^

i - B e_ (2)
m

where "v" is the speed of the particle (a constant of

the motion), --v/}°) is the component of the guiding center

58
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speed parallel to the magnetic field and _{v_°) its

corresponding perpendicular component (as if the

motion had taken place in a field made up of the first

term of the Fourier series of the actual field).

[or the remainder of the paper we will use the symbol

(o) for <Bc) _ The mirror point Bm, is definedB c • ,

as the point where the component of the parallel velocity,

is zero. Note that, from the chain rule, we have

(o)  B(o)
(o) c (3)

VBc - _ V_c + _V Bc

in (I).

B- Trapped Particles Mirroring at a "Flat" Magnetic Equator

Along each line of force there exists a point

of minimum magnetic field magnitude. The totality of

such points make up a topological surface in space which

is called the "Magnetic Equator." If this surface is

flat, then the totality of points must lie on a plane.

Examples of such field models which satisfy this condition

26 15
are given by Mead, or Hones.

Since a particle mirroring along such an equator

does not bounce, (ie: it is caught in a magnetic

potential well) its entire motion may be analyzed by

a two dimensional mo_el of the actual field. That is,

we orient our z-axis along the direction of the magnetic
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field vector (which is coparallel throughout space

in accordance with our assumption of a flat magnetic

equator) and assume that its extension in space is

straight lines of force along which the magnetic field

is constant and equal in magnitude to the value at the

actual magnetic equator.

Hence we have

g(_,y,_) = B(×,y)¢ (4)

This suggests that we choose a as a function of B(x,y)

since it is constant along lines of force (see Appendix

V). Furthermore, from 11-(5) we have

?(x,y,z) = _W(x,y) (5)

and we may always choose V = z in this type of field

thus implying

w(_,y) = ¢
Z

g(x,y) = B(x,y) (6)

is then the solution to the partial differential

equation

8B 8fB 8B 8_B
B(x,y) = y_- _g - BT b--£ (7)

To establish such a field as (4), however, it is

necessary to assume that we have perpendicular (to

magnetic field) current densities in space. This means
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that we no longer can choose _ = I as was done in

arriving at the result 111-(50). Indeed to be correct,

we must return to equation 11-(22) and rederive the

result including _ in our calculation. However, because

_c may be chosen as _x,y) in this particular example of

the flat equator the _(_2/B2) _2 term that would be
'

an additional term in our rederivation vanishes, thus

leaving us with the consequence that, indeed, our

result 111-(50) is valid.

Since we may choose _ as an arbitrary function of

B(x,y) it follows that V_ c and VB c are in the same

direction so that the vD • V_ c = 0 in III-($0). As

a result the equation becomes, using the previously

c
noted fact that -_ _--_:_ c_c

dt- - 2co B -: 06 (8)
c C

Furthremore, since we are at the equator

VB c = Vf(_°) = f' (_c)wc = g (Bc)wc (9)

so that

(lO)
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 h(Bo)
But _ - 0 because Bc is only a function of _c"

-_ dB at the guiding
In addition, vD • VB c is no more than _-_

center so that (8) becomes

(ii)

• .

The right hand side of (ii) is an exact differential in

light of the fact that the first order motion predicts

that vD V_ c
= 0 which means that the path of integration

of the first order trajectory is on an _c = constant

surface. We may therefore integrate (II) to obtain our

corrected first integral

-_ V_ c

_c 2c0 B V_c
C C

If the field were axially symmetric then the correction

term in (12) would not vary in azimuth so that the

correction term would be constant and might be brought

to the right hand side of (12) thus retrieving the

result that c = constant are the invariant surfaces in
c

space. That the correcting term in (12) is small may

be seen as follows. We define the new length

VDX B
-_a' = c me (13)
c B2 q

C
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in anology to the Larmour radius. Clearly this is much

smaller than the Larmour radius itself, by virtue of the

t otIv%l{ l:i
I |

we may change the correction term in (12) to-a c c

so that (12) may be simply written as

, w = 2¥ (l_)_C - ac c "

The second term on the left hand side of (14)

accounts for the splitting of invariant shells as a

function of particle energy. An example of the effect

of such a term on the motion of trapped radiation at the

equator of the Mead 26 model of the magnetosphere is

worked out in Section VI.

C- Particles Mirrorin@ at Latitudes Above the Magnetic

Equator

(i) The First Order Trajectory

Next consider the more general case of a particle

which now mirrors at higher latitudes than the magnetic

equator. We will now proceed to derive an expression

that is more general than (12).

Consider the motion of the guiding center of

trapped radiation. Qualitatively, equation (I) and

(2) describes the average motion of the guiding center

as a "fast" bouncing motion from mirror point to mirror
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point in addition to a "slow" drifting motion perpendicular

to the direction of the magnetic field and its gradient.

Consider now in detail the motion of a charged particle

in the field made up of the S-independent component of

the magnetic field. This motion is quantitatively

described by equations (i) and (2) and pictured in

figure 8. Depicted is a section of a constant "_"

surface. The curves in the horizontal direction are

constant V curves, while those in the vertical direction

are constant _ curves.

Suppos_ the guiding center of a particle starts

at (Co,_o,Vo) "bounces" down to the lower mirror point,

Vm_ (where Bc(°) = Bm )' is reflected to the upper mirror

(o) = B ) is reflected againpoint, Vm+ (again where Be m '

and finally reaches (_o' _2' VI) one cycle later.

Notice that the first order motion dictates that at

every point of the path vD Vc c = 0 so that the entire

trajectory lies on the constant "_ " surface.
O

(ii) The Averaged Drift Velocity___

Let us now define the velocity, _c(V I, V), (see

Northrup and Teller 34)such that the following two

conditions are satisfied

l, v) • w(v l) : 0 (15)

o .
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_c(h' v)" v_o(vl):_D(°)(v) vso(v). (16)

_c(VI, V) is defined in such a way that it carries a

"fictitious" particle from (_o,81 , VI) to (_o' 82' VI)

(shown in figure 8) in the same time as it takes the

actual guiding center to move to the point (_o' 8, V).

Since all motion will now only concern the guiding

center of the trapped particle, we will drop the subscript

"c" but remember that the motion will be that of the

guiding center.

The solution of equations (15) and (16) is given by

A

_C _; V_ (VI)X e_(Vl)(Vl,V): O)(v) c- B(Vl) (lr)

That (17) is the solution of (15) and (16) may be

demonstrated by substituting it into the equations and

using 11-(3).

We now define the "bounce average" of the function

"Q" as

a } Q dl _,. f _&v
%v._ w v% %

v__
(zs)

where the period" is given by

_rm_

<_
(19)
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"dl" is the differential length along a line of force,

and we have used (2) in (18) and (19).

Using the definitions (18), (19) we may now obtain

the "bounce-averaged drift velocity" as

(vI)=_ (vl,v - B(Vl)
Tc Tc

(2o)

so that the motion of the guiding center may be replaced

by average drifting motion, given by equation (20),

along a curve made up of a constant s o, constant V I

surface. Furthermore, any function to be evaluated

along the actual first order trajectory may now be

replace_ by its average value over a bounce period.

Therefore we have for the average values of --_°) and

T c

Vm+

/ I_CBm IBc--_ I I

(21)

X

vPc

i dv B(°)
B c (1 cB

m

)1/2 (22)
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Since V_ x _ = _ and _ • _(o) = B(O) B, equation (22)

may be written more briefly as, after some algebra,

c• qTc _ (23)
T c

where

J(°)(_o) =___[mv

(o)
Vm+ Bc 1/2 dV

(1 B ) Sc_ •Vm- m

(24)

The similarity between j(o) and the regular definition

of the integral invariant 5 is obvious. Furthermore,

equation (22) also checks with Northrup and Teller's

result 3% which was obtained in a completely different

manner. We may further note that the partial derivative

06

of (24) with respect toVagain checks with the Northrup-

Teller result; ie:

_j(o) "(o)_ o (25)
_p cC c_c - .

(iii) The Bounce-Averaged First Integral

Let us now return to equation III-(60) and

average the entire equation over a bounce period.

c 8_
We have, noting _ _ _ _c

(26)



-m -

69.

The left hand side of this equation may be interpreted

as the time rate of change of _c for times large compared

to a bounce period, T
C

With this restriction understood,

we may interpret the left hand side as

d
L.H.S. = y[ (_c) " (27)

Next consider the first term, (i), of the right hand

side of (26). This term is not zero because we now have

%(o)vD and not Its magnitude is, in fact,

-v,._ (28)

where we have used the definition of v% given in III-(_9).

We may write (28) in another more useful form as follows.

From the chaim _=_^ we .....

vB =y w 7B (29)

so that the term

(< x _Bc). V_ c

B2
C

C

in the integral of (38) becomes- _- Placing this

result back in (28) we may remove a ''_ "
from the

inside of the integral (for the guiding center moving

under the influence of the _-independent field under
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the conditions of the first order motion Vm+ and Vm_

do not vary with _ ) we have

(3o)

where " " , "rl(o)" , "TI(1)" are defined as

Be ) B(°) B (I)
n=B _ n(o_ c (I)__ c ) (I)B ; D -- B ; T] -- T](° + _] "

m mm

(3_)

We may now approximate the integrand of (30) be using

our Fourier Series expansion III-(_E).

B(z)
B-GT<<i,

We have, since

(,)

(32)

and

6)

(33)

Since _-_ of any function of B (°) is zero, (30) becomes

• m
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Next define the function j(1)

_V

as follows

(34)

(35)

which again resembles the integral invariant. The

integrand of (35) may be broken into its Fourier components

and binomially expanded as follows

36)

Placing this in (35) it becomes, approximately,

v__
5m
I

(37)
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or, using the definition in equation (2%) this becomes

(38)

Taking the partial derivative of both sides of (38)

with respect to _ gives

vm+

(39)

Upon comparison of (39) to (34) we see that we may

express (3%) as

•V_c T - Tc q %_
C

_ j(o))
(4o)

Finally consider term (ii) of equation (26).

Since the term has significance only for particles

whose mirror points are near the equator, we may proceed

to compute its bounce average for low latitude mirror

points only. So we start by expanding the integrand

in a Taylor Series about the equator. The equator is

defined as that value of "V " such that B (°) is a
O C

minimum value. The value of the magnetic potential
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"V " is very near the value corresponding to a minimum
O

in Bc, the error being of second order. We now choose

the function _ as (Bmin)I/3 The integrand of (ii)

then becomes

--_ _CBm [ i ] (_Bequator x V_3)'V_cvD-v_ = q_ 23 Bm _3
C C

t higher order terms

(_l)

where we have Taylor expanded about the equator.

may be further simplified to read

(41)

-_ bCBm [2 i i 3_2 + higherVD" V_c - q7 _3 Bm c
C

order terms.

(_-2)

It is clear from (42) that

- f(_o)

(43)

and, hence, we may write the term (ii) of (26) as

C

(_)

which is only to be averaged for low mirror points.

However, the average value in (44) over these low mirror
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points is no more than the equatorial value of the

integrand, so that we have approximately,

(ii) [- %,Vo
(45)

ie: evaluated at the equator.

of (%5) to higher mirror points by virtue of the fact

that it becomes swamped by the term (i) of the same

equation thus making it inconsequential whether it be

included or not. We conclude that the bounce average

of equation (26) becomes

We may extend the validity

(46)

Equation (46) describes the time rate of change

in _ as the guiding center has an average drift
_.__c

_c(Vo) carries it from to linewhich line of force

of force on a shell of constant "_ " predicted by the
c

first order theory. To compute the entire change in

06¢ in going from some initial to some final "B",

we simply integrate equation (46).

Consider the average drift motion.

(22)- (2_),

We have, from
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_b
½

BcC

(47)

aJ(°)I is independent of _, and is evaluated
Since _ _o

on the initial _o shell we have, placing (47) in (46)

and integrating

(_8)

In the second term on the right hand side of (48)

we need only calculate <_o)> • for low mirror point
_C

particles since this is the only place this term has

significance. In this case we have, approximately

]
C O_0 ,V 0

(49)

(o)> , isThat is, the average drift velocity, _c T
c

approximately given by its value at the equator. As

was previously mentioned in equation (i0), (49) is not
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a function of _. Hence, we finally obtain the result

]_(i] ±

: gk(l'qR,)_'= cons-La.n.t .

(5o)

upon integrating (_8). In (50) we have defined the

"unitless" constant "k" and the two functions I (°) and

i(1) as

z(o) (%) = j(o)( O)mv
(5l)

I(1)(C_o,B) = J(l)(_O'#)-J(°)(c_Q)mv (52)

where we must keep in mind that all quantities in the

expression apply to the guiding center of the

trapped particle. The second and third terms on the

left hand side of (50) are second order corrections to

the first term. The "unitless" constant "k" is therefore

not far from its value for the _-independent field case.
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_c (at the guiding center).

(iv) Simplification of the New First Integral

We will now proceed to evaluate the integrals

in the corrected first integral equation, (50). As

previously mentioned, we may replace _ byhas been

Furthermore, define c

such that

.(l)
E --_

(53)

so that (50) becomes (using (24),

some algebra)

C_c +

p

V_+ o[V

L _1 o60

(38), III-(39) and

2"M _ I_Z I_"1
- = _.k_

d.,o _'V o

where "R" is the rigidity of the trapped particle,

"M" the magnetic moment of the earth, the second term

on the left hand side is evaluated on a surface of constant

and the third term is evaluated on the same
Ot : OLO,

surface, but at the equator "V " and "k" is a unitless
O '

constant.
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.I_ ,

In order to evaluate the integrals in (54), we

use the numerical fact that, over a large range of

mirror points in both the Finch and Leaton and Mead

26
fields, we find that the magnetic field varies

V 2approximately as along a line of force. We may

therefore "quadratically fit" the magnetic field along

the line of force. Thus we choose

V-V° V m V

_(o)__v(°)=o(l-_v(°))oLVm------Vo- o (55)

V-V o ]

v Vo (56)

I(Tlv_-Tbo)(V_,-Vo)_- Cav_-TlVo)CV_-Vo)_]
- - - (v-v=)

Cv_ Vo)(Vov_)(v_.- v_ )

(57)

where V ° is V at B(°)c = minimum, Vm+ and Vm_,

_unctions of ac only) are the magnetic scalar potentials

at the upper and lower mirror points respectively (where

s(o)
= Bin).
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First let us evaluate the integral in the denominator

of (54). Placing (55) and (56) in this term we have

-' - (v-v_h_
__ 7 v.. % * (_-%)<v_:Vo;

t.
_V

v_ _o))(v-vo i (58)
. [c_-_;_-0--_o_-_o)_]_

or, more simply 1 ,

f_ _0_I_o-_-___-_0__

F__ - -_0__ I

(59)

V - V

o in the first integral on the rightwhere U=___ V - V
m- o V - V

hand side of (58) and, again U_--- o in the
Vm+ - V o

second term on the right hand side of .(58)°

We may still further accumulate both integrals

on the right hand side of (59) so that it reads
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/m+ i/2(l-n(°)I dv - av
v n(° (l-n(°))i/2
m-

A_7 1 a 2
(l_n(o))l/2 Fl( ,1)

where we have defined

1

o_ (Z_U2)1/2
--dU=_

U2 +a 2

(60)

2
a

o

- l__v(O)
0 (61)

A_:--- Vm+ - Vm_
(62)

l(a2,1) is tabulated in Appendix IX.and F I
The result is

(63)

so that the denominator of the second term on the left

hand side of (54) becomes

V,n,

_ dV = frAY

V__ "

(o) -- f_. (o) ._5/_ _ _@)a'_+o- J--<'lvoJ _-qVo](o) _/_ Co) _&

-t-
SAY

_c:g •

(64)
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Next consider the numerator of this same second

term. We may, with some simple algebra, rewrite the

term as

_c ' ]otW
(65)

where the function e is given by

1 . -q_o)+ %-\v_+_-vj_ q \v_-Voj

a_ _ V-Vo_ _
_oy

(66)

where the upper sign is for Vm+ _ V > V ° while the lower

sign _-_;_ +_ intervaq v Z V < V
÷ + m- _ _ o

C i, C2 are defined by

and the constants

_©(_,-v2-C,l_._,;%._CL Vo)_

Cv_ - Vo)av

(67)
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t

(68)

where we have used (55) through (57) in arriving at (66).

Again using these equations in (65) plus the substitution

following equation (59), it becomes

i

o

_1_

±

O

±

0

(69)

(69) may be simplified by making the approximations

(appropriate to the field models we will be considering).

We may write

(7o)
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Since V is going to be near the magnetic equator, it
o

is going to be approximately O. Furthermore, Vm+ + Vm_

(which is really their difference since they always have

opposite signs) is also approximately 0 because of the

approximate equitorial symmetry. We see, therefore, that

the first term on the right hand side of (62) is all

that we need. in a similar way we may show the same

_V
about Vm+- Vo_ 2

That is, we assume

av (71)
V ° - Vm_ _ -_-

Vm + _ Vo w AV2 (72)

Placing this in (61) it becomes

1 WI/2
(65): av (o)i/2 ] (_++ c ) (1-) du

2(1 - 'rIv ) o - a 2 + U2
0

+ 0/2) f _/2 d_j . (73)o (l- _)

Using (66) through (68) and some algebra we obtain

_ = ) a2 + c
c+ + c (i__Vo

where

(7_)

(vo_(i-_ i) m+ m-
0

• (75)
-1)+(_v -1)-2(_ v -_v_°))

C4 = (hVm+ m- o o
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which may now be placed in (73) to obtain

i J(::a.\i3 +-4- C<i I::_.

where we have defined

1 q2_u2)m/2

F_(a2,q 9) _ I ( )n dU (77)o (a2+U 2

The evaluation of these integrals are tabulated in the

Appendix IX, whence upon their substitution in (76)

(in addition to using (75)) the integral in (65) becomes
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Recall that

nv(°)
o

o) mS
o
s _s

m m

(79)

so that

(o)
_n

Vo 3 (o)- (8o)
_o _Vo '

Using (79) and (80) in (64) and (78) we have the result

that the second term on the left hand side of (54) becomes

!

(8__)

Putting all the terms together (54) is evaluated to be

- _k _h-_
_$ _o_ wcl 7°

= 0 • (82)
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or, since we previously showed that we may neglect the

third term on the left hand side of (82) in comparison

to the second term, when the mirror point is not close

to the equator, more simply as

\-_'lVo "IVo/ ] "_°'--"IVo' -'Iv,,TUIv')_L_ _ _

= (83)

(v) Interpretation and Discussion of Corrected

First Integral

Consider the result (83). We must recall that

all terms refer to the guiding center of the trapped

particle. If the field were independent of _ the

correction term would be identically zero since BVo

and _Vm---+_ i, _Vm=____ i, and therefore we would recapture

the result that _ = constant, the result of the first
c

order theory. In fact, it is due to the fact that these

terms are not zero that causes the splitting of the

invariant shells. This is no more than saying that the

correction term is proportional to the S-dependent terms

of the Fourier expansion of the magnetic field. The

correction term becomes larger as the field becomes more

dependent, a result that seems intuitively obvious.

Referring to (83) we see that the splitting is only a

function of mirror point, Bm. This equation may be

interpreted as follows. Given a starting point for the
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guiding center of a trapped particle with a certain

mirror point, that is_an initial starting line of force

"_ " the magnetic shell upon which the guiding center of
o

this particle will remain is not that of the topological

surface _ = constant = _ but instead, will change
c o

surfaces as the particle drifts in azimuth. This drift

in azimuth (ie: the _ direction) depends on the inherent

B-dependence of the field and the mirror point of the

particle. As the mirror point is changed (changing the

particles magnetic moment "Z"), for the same initial

"_ " the invariant shell will change
starting line, o

shape, but always be a closed surface, so that the

drifting particle returns to its initial starting line.

Again this is observed from the result. The shells are

now said to be non-degenerate.50 We may look at equation

(83) then as hc(_ o, 8; Bm) = 2k(MR) I/2 = constant,

where _ is the initial starting line, _ is the azimuth
o

coordinate, and B the particles mirror magnetic field.
m

The constant "k" is determined by the initial conditions

of the particle (on which line it starts).

(vi) Special Cases

(a) Particle mirroring on the equator:

Returning to (82) we set q(o)-- = I (taking the

o _V I always
appropriate limiting process we find _ I _o

remains finite) to find
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1 w2+ o o 3 RSM 2 = 2k •

_c 7- 4_ ) -_ 2 o _°'Vo

(84)

The second term on the left hand side arises from the

fact that the magnetic equator does not necessarily

remain flat in space. If it did, BV would equal --_o)
O O

and this term would be zero thus recapturing the result

we obtained in equation (12). For the case of the Mead 26

and Hones 15 models this is just the case. However, in

the Finch and Leaton Model 7 the equator is not flat,

but, in fact, is some topologically warped surface in

space.

(b) Particle mirrorin@ at hi6h latitude:

In this case we may start with equation (83)

and set _°)--_0 (since the mirror magnetic field is

0

now much much larger than the magnetic field at the

equator). Under these conditions, (83) becomes

BVo- B_r° BVm +- -B) Bm BVm_ m
+ +

2Bm 2 Bm

in _V _ '
3-2_ o _

£z
O

The correction term (the second term on the left) becomes

larger with increasing mirror point. This arises from

the fact that the separation of constant "V" -- constant

i
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• o',

"B" curves in space (on a surface of constant _o)(which,

in fact, is a manifestation of the fact that the field

is not _-independent) becomes more acute as we travel

up a line of force away from the magnetic equator.

(vii) An Approximation Useful for Computing B (°)

In the case of a model of the magnetosphere

determined from measurements of the magnetic field

near the earth's surface (ie: a Finch and Leaton model)

which leads to a representation which is very close to

that of a dipole, we may approximate B as

_ ¢ + a(r,@,¢) (86)

where G(r,@,_) is a small correction to _. Because of

this, we may replace an arbitrary function F(r,@,_) by

F(°)(r,_)

27r

F(o) __ 1 Jf ?_ dgJ, -- F x±_±,,:_. (87)
2_ o )

so that the B-average is no more than the axially

symmetric portion of the spherical harmonic expansion

of the magnetic field. As a consequence of (87) we

have

BVO_ BVo(nOn_axial)
4]) =

(88)
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evaluated at _o' Vo" In addition

- B BVm+(non_axia 1)BVm+ m ..,
- i - - = - (89)

T]Vm--+ Bm BV m + (a xi a I )

so that in this case we may compute the corrected first

integral from the lines of force and the axial and non-

axial symmetric portions of the spherical harmonic

expansions of the field.

In the case of models which are based on satellite

measurements and which give a spherical harmonic expansion

which includes currents on the solar wind interface, the

field is sufficiently distorted so that we may no longer

make the approximation (87). However, in such models

(see figure 9) we may make other approximations which

replace it. For instance, the Mead field, for r { i0

earth radii, is reasonably close enough to the dipole

field that we can make the approximation (87) but in the

tail of the magnetosphere we must do the following.

Since the shells of constant _o (their intersection

with the equatorial plane is shown in figure 9) run

into the walls of the solar wind interface the invariant

shell, which is close to this curve, only has significance

over this same domain. In other words it only makes

sense to talk about this section of the invariant shell

on the night side of the cavity, because the particle

will never drift out to the day side. Thus for the

;, °
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section of the invariant surface which it does make

contact with, we may replace

¢1 +d_¢F(o)_i I F (90)

where the A_ is the azimuthal spread in the shell from

wall to wall of the cavity• What (90) really does is

capture the average component of the field "F" over the

"_ " surface in the tail of the magnetosphere. Given
O

the shape of the magnetosphere, we may determine A_

and thereby compute (90) from the spherical harmonic

expansion of the field.
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(v) COSMIC RAY CUTOFFS

A- The Equation of Motion

Next we consider particles with sufficient rigidity

so that they may arrive at the earth's surface from

infinity. As was mentioned previously in Section II,

the critical velocity of "escape", ie: where the

particle just becomes "untrapped", is known as the

cosmic ray cutoff in that particular direction (with

respect to the zenith) and at that point on the earth's

surface. In this case the particle does not bounce

from mirror point to mirror point since the energy of

the particle and its magnetic moment are of such

magnitude as to locate the mirror point below the earth's

surface.

We now return to equation 111-(50 ) and neglect

the second term on the right hand siJe since, as

previously mentioned, this is certainly of second order

compared to the first term on the same side. According

to Sauer and Ray _3 and St_rmer theory I_'5i the radiation

arriving from infinity enters the "allowed region"

through the "jaws" of the St_rmer plot, and then proceeds

to spiral around the field line which originates in

the horns of the inner allowed region. We therefore

to
need¢calculate the correction to the first integral

over this path to the surface of the earth.

93
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Hence we start with

c d _X
(i)

We now proceed to evaluate this equation in a similar

manner as was done in Section _V, except now we no

longer take the bounce average but must consider the

variation of (1) over the individual bounce.

B- Evaluating the Equation of Motion

We return to equations IV-(1) and IV-(2) and

follow the first order guiding center from the equatorial

"jaws" to some arbitrary final position. For the

differential relationship between the time and magnetic

scalar potential we have

dt - dl dV
[_V = (o) i/2 (2)
v# v _(I-_ ) n

so that the time integral of (i) becomes

V vD . V_
c _X c _ i / ( c)_ (v)-_ _- (Vo)_-_ v v

0

dV

n(l-_(°)) I/2

Again recall from III-(39)

VD" V_c _c i B x VB V_
-- C C C

v Bm vqT c B2
C

_ _c

vqT

(3)

(4)
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so that (3) becomes

_-_ v)- ° _X 'v _cq _ ( _ _Y_-'o)= vq_

V

V o

+ ln(_)

1-_(°))l/U
dV (5)

We may now reperform the analysis in Section IV equations

IV-(30) to IV-(39) to arrive at an equivalent expression

for (3) (good up to and including terms of second order)

which is

(6)

where the rigidity "R" has been defined previously.

_n addition, we have removed the partial derivative with

_spect to B from the inside to the outside of the integral

on the right hand side of (6) since the drift velocity

is small and therefore the scalar potential "V" is

approximately independent of _.

We will now proceed to calculate the integral

on the right hand side of (6). Whereas in section IV

(equations IV-(55),(56),(57)) we chose a parabolic fit

of the magnetic scalar potential between the equator

and the mirror point of the particle, we now choose

a parabolic fit between the equator and the point at
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at which we would like to compute the cutoff. We

replace the equations IV-(55),(56),(57) by the following

V-V °° (V o)o
and

_v -_v°)(v+-v°)2_(_v÷-_v°)(v--vo)2]n-nVo: (v+-vo )(v-v o) (v+-v) J (V-V o )

Inv -nVo)(v+-Vo)+( )(Vo-V)]
_V+- _V °

+ (v+_Vo)(Vo_V)(v+_vI (V-Vo)2 (8)

where if " "V+ corresponds to the point at which we compute

the cutoff (if it is in the northern hemisphere)

then "V " corresponds to that value of V such that

--4 °)-- --4? ) (in the southern hemisphere). If the cutoff

is to be computed in the southern hemisphere then we

interchange the roles of V+ and V_

For all practical purposes, in computations

taking place in fields like that of Finch and Leaton 7

26
or cavity fields like that of Mead, we may make the

following approximations

V+ : V - V- Vo o -
-_v

(9)

_V = _V
+ -

so that (7) and (8)would simplify to read

,m'" °
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(i0)

V-V 2

= nVo + (_V+-_Vo)(--_) (ll)

Using (i0), (ii) and (12) in the definition of _+

(equation iV-(rr)) we _±i,_ .....oo _---A +_+ in this case c, =
t

c_ -- _ so that we have

In addition,
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(_-<)% ! [e
rn_ _ _ _-_]

1 _ 1

(i/2)(___(o))i/22(_v(o))i/2
0

If we define

U--

V-V
0

6V

m

(f-Vo]_lv_
m? - k--_m) -] ' (15 )

(16)

then (6) becomes

(17)

where

l

0

l

i
l-

0



The evaluation of J_ is straight forward as was a

similar calculation in Section IV. Placing (16) in

(13) and the result in (18) we may express it as

_a--%== F= ¢) n{

(19)

using the notation of 111-(59). Using the tabulations

of Appendix IX,

2)1/2 2 -1
m cot

-- m2 (p2_1)1/212(1+m2)

we may quickly evaluate (19) to give

[(l+n2 )-L/_ __0 j - C";.T_

l+n 2 ) 2

(20)

The partial derivative of (20) with respect to

may now be calculated. Notice that the entire _-

dependence resides in the c and terms.
V ° [V+

The "n"
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and "p" terms are functions only of the first (_-independent)

terms of the Fourier series of the magnetic field.

Therefore, we must first compute, from equation (12),

the partial derivatives

o _ i aB _ I _ x w).v -_I x vB)-v

-_ _6_ Vo B2 V° BV° B2 V o
O

_ x v_ .....Cv+_ 1 1 (_ w)- i (#x _B) w

_7+ - B2 v+
_ v+ v+ By+ B2

where we have used equation (20) of Appendix II. Placing

this in equation (20) after taking the derivative with

respect to _ we obtain, after some algebra

8v %_

C_.(°) _ .l_')v_ %._,,,.

t'-V¢ --

(22)

-%

_5 Jr,

cot4- < $_.- 1 ;

(27)

L 'lv 
k ?v,- z

V,
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where we have defined the function "Q" in such a way

that it will make further calculations less clumsy.

Placing the result (23) in (17) we have for the first

integral

+ Rivaloos )1/2B + R Q = 2k (M R (24)

where we have replaced the value of _ by the expression

previously quoted in equation II-(54) (the left side),

"k" is a unitless constant defined in the same way as

was defined in IV-(82) determined by the initial conditions

of the problem, _ is the angle between v and B x V_

evaluated at the actual particle position. Equation (24)

is the corrected first integral applicable for high

rigidity particles.

C- Cutoi'_'s Near the Equator

It is interesting to show that the correction

term "Q" goes to zero as the observation point approaches

the equator. This is intuitively as it should be since

the particle never gets the opportunity to "drift" off

the constant _ shell upon which it starts. Referring

back to equation (23) we would like to take the limit as

+ _ V o (ie; as 6v -_ 0, {+)(o -_ I, --_ _[5__.__V___]
V

B2 V+ _ j
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Firstnoticethatfor_mallvolueso__V,4_)_4o)
0

and we may approximate

~ k_r,
(25)

since the magnetic field B (°) is a minimum at V o and

therefore varies with the square of the magnetic potential

in this vicinity. As a consequence of this, the term

6V

([(o)_I)½ in Q becomes
V+

as we become arbitrarily close to making 6V --_ O.

This part of the expression therefore approaches a finite

limit. All that remains to be shown is that the remaining

terms (multiplying this) approach zero as 6V---_ O.

If we Taylor expand cot -I X for large values of X

it is easy to show that it approaches _ Hence it is
X ' 3

clear that
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(27)

and therefore the first term on the right hand side of

(23) is zero. Next consider the terms in the second

bracket of the second term of the right hand side of

(23). Again taking the same limit (noting that sin -I X ---_ X

for small values of X) we have for this bracketed term

I

cot-'< F%%-1]
_0

|

1 (°) _"(-%) , _,

= _ (°) (o) ,_ -_o(_qM)0-_%)'_
Vo

(29)
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Using the definitions in equation (12) this may be written

1 <(l+n 2)m 2 m2 m2(p2_I)½]= L]mm__oo (Bm_°))½ 2(p2_i)½ 2p 2(l+m 2) J (30)
p -_ o

combining the third and the first term this becomes

= Lim # 1 ½]_l+n2)!l+m2)-p2+l _ _]m-_)(B B_[°)) p2-1)Z(l_)

mVo m

(3l)

or

m-_l(Bm4 °)) ' (I+ _)(i- -7) 2

p -_oo< o m p

m__ (32)
P

_±

Binonially expanding the terms (I + )-i and (I -_ ,

m p

keeping the lowest order terms, (32) becomes

= Lim _ I I I(_2+p2+m2) I _]
m__,_I (BmB$O)) ½ (I- _-#)(l+m 2p 2)- (33)

p_ o

or, multiplying out the terms and cancelling we are left

with

m--_oo (B _o )
p.__oL mBVo )

2+n
P

2+n2+m 2

2p3m 2

2 +n 2 +m 2 p

2 2p
p m

(34)

where we have used the fact that p = mn. Equation (34)

obviously becomes zero ("n" always remains finite) and
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therefore we have shown that, indeed Q--_O as 6V--_0.

D- The Cosmic Ray Cutoff Rigidity

Returning the equation (24), we now have a

quadratic equation in "R" that may be solved yielding

the corrected version of equation 11-(55).

R = Mk 2

[i + _i Mk2(_ ,V_,cos_ +©)B _ ]1/2 ]2 .(35)

The cutoff rigidity in the direction "_" is then obtained

from (35) by setting k = 1. 38 We have

M (36)

The cutoff rigidity is therefore seen to be altered by

the fact that the field is not independent of B. This

correction is manifest in the term "Q". The vertical

cutoff rigidity is obtained from (36) by evaluating "Q"

at the earth's surface, and choosing "_" as the angle

between the zenith (vertical arrival) and the _ x Va

direction. For fields like that of Finch and Leaton 7

which are basically dipole in nature we may make the

following approximations. The "exact" vertical cutoff

rigidity in the dipole field is found (as can be shown

by simple geometry) by setting cos_ = 0 and Q = 0 in

Solving we have
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(36). This yields

2

RCut.(vertical, dipole) = _-_ ° (37)

Since the fields which display a close to dipole symmetry

are not far from 8-independent (since in this case,

6_ _, and the field is reasonably close to axially

symmetric) it is clear that both "Q" and cos@ are small

thus indicating that

,Q

Iv_lcos_ << 1 (3s)
Mk 2 B

_Q--_ << 1 . (39)
m _

We may further simplify the form of (36) by

defining several unitless quantities. Define

R
e

B
e

: 6.3712 x 106m

= 0.3120 gauss -Q=-- c_l(BeR2e)Qc_/M I

_7--_= Re_ >

_ _ [VB = ReVB

Z = B/Be i

#V = V/BeR e

(_o)

We may therefore express (36) as
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_. BeRe

Rcut = -- 2 (gauss-m)

_+ + Q - (_I)

where the subscript "V+" means that the quantity should

be evaluated at the point on the surface of the earth.

We may further make the approximation that

c_3 c_3

c_o_ B )_ _ 7 (42)

V+ _6_ _ c3

O

(43)

In addition, we may compute the mirror point as follows.

At the point of impact on the surface of the earth,

(coming in along the zenith) we compute the magnetic

moment of the particle

2 P _BV +

2moBv+ 2motOr+

(44)

which is the same value of magnetic moment that would

be computed at the mirror point

2

= 2_B • (_5)
0 m

Equating (44) and (45) we may solve for Bm as a function
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of BV as
+

BV+

Bm = en x eBv +

A
where e

n
is the unit normal to the earth (in the

direction of the zenith) and e__ is the unit vector at
V

+
the observation point in the direction of the

magnetic field. In unitless form we may therefore

express _ as {- I

- 1 /

(47)

cot-'

P_

___ / ....

]

Equation (41) with (47) now allows us to compute the new

corrected cutoff rigidity in the vertical direction on

the earth's surface.
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(VI) _U/MERICAL EXAMPLE

As an example, we will now work out the exact

solution of energy-dependent shell splitting for

particles mirroring within 7 earth radii of the origin

26
in a field model proposed by Mead.

+,i i+
' _ _Z

cos¢)@ (1)

where the first term in the two-dimensional dipole

(M = 7.72 x I0 I0 gauss-km3 = dipole moment of the

earth), and the second term is due to surface currents

(_ -1 =in the magnetosphere = 2.515 x i0 -_ gauss, g2

1.215 x 10 -5 gauss/km). The coordinate system is shown

in Figure I0.

We will first proceed to find an _ and _ describing

the field of equation (I)° Since the magnetic field is

uniform in the "z" direction (along the lines of force)

we may choose our _ as any function of this constant

magnetic field intensity.

it the particular function

l/3

In particular, let us choose

(2)

We may also choose V to be, simply

V = z (3)

109
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and

F= B . (_)

It is much clearer to write everything that

follows in a unitless form. To obtain this result we

define

-- _/re3B e

_r
e

p=_P--
r
e

M

Be r3
e

B
e

vlI /_

(5)

where "r " is the earth radius (6317.2 km).
e

(2) then become

(i) and

3+a + bp cos e'_) = Be z

_(-F,¢)-- 3 + a + b-Fcos

(6)

(7)

"_" may be computed by solving the partial

differential equation 1-(4) using (6), (7) above.

That is, the solution to
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sin YF (S)

+

The solution to (8) can be quickly found by the

method of characteristics, ie. we must solve the

differential equation

d_ b sin
= 3 +b cos __

p- p
(9)

The solution to this equation is not difficult to find

and is given by

_L + b- ¢ k (lO)
-#3 p cos =

where "k" is a constant. The solution to (8) is then

given by

F(_,¢): f(k)+J¢
3(k + a)5/3y,2 de'
(-_/-F'3 +k) (il)

where p' is the solution of (i0), and f(k) is an

arbitrary function of "k".

Equations (3), (4), (7), and (ll) are thus a

complete description of the field (6). The trapped
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radiation shells, to the first order, are given by

= constant• However, because of the correction term,

the invariant shells split as a function of energy, and

the corrected expression is given by equation IV-(14).

(i) (ii)
------ - 27a' • VC_ 3 =

C C C

where

a
c

mc vxB

q B2

v x B
mc D c

a ! :

c 2 q B2
C

B x VB
--_ _C C C

VD - qT B2
C

(12)

J

Te :

vD being the drift velocity, ac the Larmour radius, and

' an equivalent distance much smaller than the Larmoura e

radius because << v Whey appiyimg _i_ _v_

trapped radiation, we will be considering particles of

sufficiently low rigidity that we may neglect second

and higher derivatives of "_" when expanding it about

the instantaneous position of the particle to obtain

its value at the guiding center° That is, term (i)

of (12) is given approximately as the value of
C

at the guiding center.
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Term (ii) of (12), after some algebra, can be shown to be

I 122 Wc (13)3 ac
(ii) = - _ _

C

This term over _ is of order the square of the second

term of (i) of (12) over _ and is therefore a small

correction to the fact that (i) is the value of _ at

the guiding center, yet it is larger than the next

(second derivative) term in the Taylor Series expansion

which is neglected when approximating (i) by _c" So

indeed, the new equation predicting invariant shells

becomes

_ 3 ac I = 2{ (i_)
2

m e _ (Zc

For the given field model, we may now evaluate

the space curves that (14) predicts. Placing (6),

(7) and (12) in (14) we have the result

m

R7
where k I : r-- ' r B is the ratio of the Larmour radius

e e e

at the earth's surface and the radius of the earth (very
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-4 -5 and
small indeed), a = 8.09 x I0 , b = 6.78 x I0

r = the earth's radius = 6.3172 x 109 Cmo
e

That the second term on the left-hand side of

(15) is small compared to unity may be shown as follows.

The bracketed part of the second term of (15) is always

smaller than about I0 whenever 7 ) P ) I, so that the

second term is of order e ° For relativistic
r
e

particles, the relationship between rigidity and energy

is given by

-- (1 +  )i/2_ i

where

E
T]= --Y

moC

R

(moC2)/q

(16)

so that if we select an unusually high rigidity particle,

say I0 bv, which, using (16), corresponds to about I0 bey
R/B

e _ 0.05, and hence
electrons or protons, we find -7---

e

the correction term in (15) is of order 0.0025. It

follows that we may safely expand the terms in (15) with

the binomial expansion and obtain as a result (keeping

the lowest order terms)
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Incidentally, that i0 bv is a very large overestimate

and therefore overly pessimistic is seen by noting that

observed trapped radiation energies are given below 19.

._ °

TABLE I

Electrons :

Protons:

20-600 Kev

40-200 Kev

7-8 Bey

40 Mev

30- 60 Mev

7- 8 Bey

inner-Van Allen belts

outer-Van Allen belts

Cosmic Rays

inner-Van Allen belts

outer-Van Allen belts

Cosmic Rays

Incidentally, note: [Bv = 3.3352 x 106 gauss-cm.

To demonstrate the change in invariant surfaces

that (17) predicts we will now compute the approximate

invariant surfaces for two particles both starting at

= 90o and the same equatorial radius but one with

R = 0 and the other for R = I0 by, an unusually high

rigidity for trapped radiation. All other trapped

particles will have, respectively, invariant shells

which fall within these limits.

First define

(9oO)-- o (18)

and cR(_) such that

[R(_) : _o(I + oR({)) (19)

cR(9o°) = o
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where TR(_) is the solution to (17). The facility in

such definitions is clear from the fact that, for

7 >i P _ I the invariant surfaces are not far from

circles of radius To o

In the case R = 0, we have

I
+ a + b(p°(_))cos_ = constant (20)

for the invariant shells. The constant is evaluated by

placing the initial condition that _(_) = po when _ =

90o° (20) then becomes

i

[Vo(¢)]3
+a+bE.6°(¢)] cone- 1

(-Fo)3
+ a (21)

Placing (19) in (21) expanding binomially and keeping

the lowest order terms in c°(_) we find

o b co_d (20
zT- b cos_
Po

which predicts the invariant surfaces

On the other hand, we may return to (17), utilizing

the result (23) to derive an expression for ER(_)

corresponding to a particle of rigidity "R" having its
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guiding center start at the same position as the particle

R = 0. Under the circumstances of this boundary condition,

we may evaluate the constant 2k ! in (17) to be

Placing (19) and (24) in (17) we have, putting the

equation in unitless form

±

where

<a = a

R
_=

BereP o
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Since ,,_2,, and ,, R(_),, are going to always be much

smaller than unity, we may binomially expand (25) in

both cR(_) and ,,_2,,o As a result, after some tedious

algebra, we obtain keeping terms linear in eR(_) and

,,_2 ,,

We may still further simplify this expression by noting

that over the range 7 _ P _ I the maximum value of a

is 0.28 and that of _ is 0.16 thus allowing us to make

further binomial expansions in the parameters a and b.

However, in this case we must keep more than the linear

terms and arbitrarily cut off the expansions when we

make a 5_ error or less.

algebra is then

The result of more tedious

p_(_) t _(_)_ p_ E]U)(_-- _ a + _] __ 2 C 0 S _ I

(27)

We may infer from (27) that the energy dependence of

the shells is small because of the multiplicative (B--_)2-
e e

term Furthermore, the term ,,_3,, becomes smaller and
• _O

smaller as the initial starting point on the shell is
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reduced (closer to the earth's surface) so that the

splitting goes something like the third power of the

distance from the center of the earth. To further get

an understanding of the orders of magnitude involved see

the plots in figures Ii and 12. It is clear that the

splitting due to energy is very small. Comparing the

two figures we see that the first order correction of

Ray I gives invariant surfaces which diverge from the

circular dipole invariant surfaces by about 3000 km

for a 20 by particle at po = 7. However, the splitting

of this shell is less than i kilometer at 7 earth radii

for the most energetic particles considered.
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(VII) NUMERICAL CALCULATIONS

The Cornell Control-Data computer was employed

to map several Invariant Shells in the Hones 15 and

Mead 26 models of the distorted solar wind cavity (using

equation III-(_3)) as well as correcting several

predicted Cosmic-Ray cut-off rigidities (using equation

V-(4!)) in a Finch and Leaton 7 model.

We will now describe, in detail, the computer

code used to obtain the numerical results. We will

start by explaining the function of the subroutines and

then go into detail about the main programs.

A- The Subroutines

(i) MAGNET_:

The subrcutine MAGNET includes all the magnetic

field models of the earth we will be dealing with.

While the models of the Dipole and that of Hones are

explicitly represented, because they may be expressed

simply, those of Mead and Finch and Leaton are tabulated

as Spherical Harmonic expansions. The parameter "KONST"

selects the field model desired. The input is the

position in space (REQ, TE0, PEQ) and the corresponding

output, for the chosen field model, is the magnetic

scalar potential "X", the components of the magnetic

field at the same point BR, BT, BP and its magnitude BB.

The spherical harmonic expansions are taken from II-(i0)

and 11-(16). Tabulations of the terms of these equations

123
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are given in Appendix VII while the corresponding Gaussian

Coefficients have been tabulated in Appendix VIII.

(ii) RUNKT and DERITV:

The subroutine RUNKT, as its name implies, employs

a Runge-Kutta _8 technique for the solution of differential

equations. The equations given by

dr
- (1)

ds r sin@ B(r,@,_)
(3)

for the lines of force are housed in the subroutine

DERITV which is called from RUNKT. Given the input

point (YY(1),_-Y(2),Y-_(3)) and a running length along a

line of force (denoted by "s" in (i) to (3)) a neighboring

point "ds" away on the same line of force is then computed

using the Runge-Kutta Taylor Series expansion technique.

The output of RUNKT is given by the same (YY(1),YY(2),YY(3))

which now have the new values of the neighboring point

on the same line. The input parameter KONST in this

subroutine selects the field model which is called in DERITV.
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(iii) LINES_I :

The subroutine LINES_ is designed to trace out

lines of force from the magnetic equator to a given

mirror point. The equatorial input point (RIN, TIN,PIN)

given, the subroutine will trace out a line of force in

the field determined by KONST until the mirror point

determined by the parameter INPUT is reached. "INPUT"

is so designed to allow the tracing to stop when either

the mirror coiatitude, (TPRI) the mirror magnetic scalar

potential, (XPRI) or the mirror magnetic field magnitude

is attained. (BBPRi) The step size is given by the

input parameter DEQI. A "hunting" technique is employed

to zero in on the given mirror point parameter (ie:

DEQI is decreased during the last steps of the tracing

of the line until the given mirror point is reached

within a given percent error). The parameter LCTMAX

limits the number of steps taken during the tracing of

a line to guarantee that we stay away from very long

lines near the polar regions.

(iv) A PmR:

Given an input point (RIN,TIN,PIN), a step-length

DEQ and a magnetic field model KONST, the subroutine

ALPHAR will trace the line of force passing through it

until it reaches the magnetic equator where it again

"hunts in" and computes the value of "_" corresponding

to that line (defined as a function of the magnetic
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field at the equator). The output appears as the value

of the magnetic equator's position, (RMIN, TMIN, PMIN)

magnetic scalar potential, (VMIN) and field value (BMIN)

at this minimum point where "_" is computed. The subroutine

ALPHAR calls MAGNET, and RUNKT.

"_" for that input point.

point

ALPHA is the value of

(v) DLNVDA:

I
The subroutine DLVDA computes the value of _-_

on the line passing through the given input

_O
(REQ,TEQ, PEQ); where AV is the change in the

magnetic scalar potential from the input point to its

_av
conjugate point in the other hemisphere, _ is the

_O

change in "AV" with "c", evaluated at the line passing

through the input point. VPLU and VMNU are the values

of the magnetic scalar potential at the input and its

conjugate point, BMIRR is the corresponding magnetic

I _AV I Again, DE04
field and QUOT is the output A-V _ ICo

is the step-size and KONST the input field model selection.

(vi) GSAnB:

GRADB, as its name implies evaluates the gradient

of B at the input point (R,T,P). The increments determining

the neighboring point from which the derivatives are

obtained are given by (EPSR, EPST,EPSP), while the components

of the gradient are given by (DELBR,DELBT,DELBP), and the

magnitude denoted by ADELB. The definition of the

derivative is used to compute this gradient in GRADB.
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(vii) GRADAL:

In a similar way GRADAL computes the gradient of

"_" at a given input point (R,T,P). The only difference

is that, whereas in GRADB increments in MAGNET were

taken to generate derivatives, now we must take incre-

ments in "_"; which calls the subroutine ALPHAR. Again,

the increments in position are given by (EPSR, EPST,EPSP)

and the step-size needed when computing "_" at neighboring

points is given by DE02. The fundamental definition of

the derivative is used as the computational technique

in the subroutine yielding the output of (DELAR,DELAT,

DELAP,ADET_J_) which are the components and magnitude of

the gradient of "_"

(viii) CONSTA :

The subroutine CONSTA maps curves of constant

"_" in the equitoria! plane. Placing an input point

into the subroutine (RINIT,TINIT,PINIT) and selecting a

new value of azimuth "d_" away (DALTP) the code proceeds

to "hunt" in the same input equitorial plane until it

zeros in on the same value of "_" as the input point.

The increment of "radial hunt" is given by DALTR. Again

KONST selects the model, DE©5 the step-length when

computing "_" and LCTMAX the maximum number of steps.

 wALP :

Given the input point (RRI,TTI,PPi) and the corres-

ponding (ALPHI) and new value of "aN" (ALPHN) at a new
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value of azimuth "d_" from the first value, the subroutine

NWALPR computes the position of the point in the magnetic

equitorial plane where the value of "_" is ALPHN. A

hunting technique similar to that used in CONSTA

determines the new point, within a given percentage

error in the true value of ALPHN compared to the calcu-

Lted value from the newly found point. The new point

has the coordinates (R2,T2,P2). DELTR is the radial

"hunt" increment and KONST,LCTMAX,DEQ have the same

meanings given previously.

(x) LANDI, LINES, INTEG, CARMEL, START:

The subroutine LANDI performs two functions, given

the input point (R,T,P) and the field model KONST. It

will compute the corresponding Mcllwain "L" parameter

for that point and the Integral Invariant "I" for that

point. LANDI calls the remaining subroutines LINES,

INTEG, CARMEL, and START. All subroutines call MAGNET.

Except for some slight modifications in the input-output

sequence, this group of' subroutines was borrowed from

aS
Mcllwain. it has been treated essentially as a

"Black Box".

_t ,,"
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B- Plots of Trapped Particle Shells

Invariant shells are mapped for the Hones and Mead

models of the magnetosphere as follows.

Several "starting points" are selected in the

equitorial plane and in the sub-solar direction. For

each starting point a set of mirror points (in latitude)

and rigidities is selected.

First, consider that set of particles that mirror

at the magnetic equator. For each starting point an

azimuthally neighboring point is located in the equatorial

plane (call CONSTA) and the "V@" is calculated. From

this azimuthally neighboring point the next point is

located, in the same manner, and the calculation repeated

until we cover 2_ radians in azimuth. For each rigidity

and azimuthal point equation IV-(82) is solved for the

new (corrected) value of '% (_)" The results are fed
C

into the subroutine NWALPR which locates the equitorial

crossing of the new (corrected) invariant shells. The

output is then the corrected invariant shells, as a

function of rigidity, for various radial distances from

the earth.

Second, consider the set of particles that mirror

at latitudes higher than the earth's magnetic equator.

At the same starting points given above, the magnitude

of the magnetic field and its associated magnetic scalar

potential are computed for several mirror latitudes
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along the line of force passing through these points.

• I _AVI is computed (calling DLNVDA).At each mirror polnt _-g _ _o
I

Following the same procedure'given on the previous page,

other azimuthal points are located on constant "_"

curves (in the equitorial plane) and the lines of force

through these points are used (call LINES_ ) to compute

the values BV+ which correspond to the same magnetic

scalar potentials located on the starting lines. After

this is repeated for all values of azimuth the results

are placed in equation IV-(83) from which is computed

the "new" value of "_ (_)" Again this is placed in
C

NWALPR and the equitorial 'crossings of the new invariant

shells are calculated. The new invariant shells through

each starting point are split as a function of mirror

point.

The results of the latter calculation are compared

with the Integral !nvariant and Mcllwains "L" parameter

as follows. Through each of the starting points and

for each value of the mirror point, the value of "L"

and "I" are computed (call LANDI)o The equatorial

crossing of the surfaces predicted by the constancy of

these "invariants" are then computed and tabulated.

A comparison of the previous computed results and these

values is then tabulated.
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C- Corrections to Cosmic Ray Cut-Offs

Selecting several points on the surface of the

earth, the vertical cut-off rigidity is computed with

the aid of equation VI-(41). The subroutines which are

called are ALPHAR, MAGNET, GRADAL and GRADB (and the

respective subroutines which they call). The results

of the computation of the above equation are then compared

with the results of Shea, Dropkin, Ray. All rigidities

are expressed in By (Billion-volts).

D- The Results

(i) !nvariant Magnetic Shells

The two magnetosphere models of Hones 15 and Mead 26

are used as approximate models of the earth's field. The

direction of the sun in the earth-sun line is chosen in

A

the ex direction while the direction of the north star

is chosen as the _ direction. The e direction is then
z y

out of the paper (see figures 13 and 14). In Figure 13

we plot the lines of force of the Hones field in the x-z

plane, while in Figure 14 we plot the same for the Mead

field. Superimposed on each figures are the lines of

force of the dipole component of the geomagnetic field.

Both figures are modifications of figures appearing in

the Journal of Geophysical Research. Exact mathematical

expressions for both field models are given in Appendix

VIII. (The earth's dipole points south).
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The results of computer calculations on the Cornell-

Control Data 160% computer are shown in figures 15

through 3%.

For both field models, "initial" lines of force

were selected in the sub-solar direction (_=180 °) which

intersected the equator at T = 2, 8, 14, 20, 26 earth

radii. (In these models the magnetic equator is

"flat" and coincident with the geometrical equator.)

For each initial line of force, mirror points were

selected at _m = 80°' 50°, 25 °, 0 ° except the lines

passing through _ = 2 where we choose _m = 50°' 30°'

15 °, 0°. At each initial line of force and for each

mirror point, equation III-(83) was used to compute _.

The equation then was used to map out the invariant

"h c'' shells which are now not constant-_ shells. Since

both fiel_ models are symmetrical about the x-z plane,

the invariant shells are similarly symmetrical so that

the figures 15 through 34 only show half of the magneto-

sphere. The intersections of constant - h surfaces with
c

the equator is then plotted for each initial mirror

point, line of force, and model. Superimposed on the

constant - h c plots are (a) the equatorial intersection

of constant I (Integral invariant surfaces), and (b)

the equatorial intersections of the _ = constant surfaces
c

which arise from the zeroth order first integral solution.

Associated with each integral invariant surface, there

_o
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corresponds for the same mirror point, a constant L

parameter• Therefore, the integral invariant surfaces

are fabled with the "L" parameters also. All abcissa's

are in degrees, and r, _ , L, I and h are in earth radii.
C C

The integral invariant shells are seen to diverge

further and further from the _ = constant shells as
C

(a) the initial line of force is a greater distance from

the earth in the subsolar direction and (b) the mirror

point of the trapped particle is at a higher latitude

for a fixed inigial starting line at _ = 180 °. When the

first order correction is used, he=cOnstant , it brings

the new predicted invariant surface within 7_ of the

constant I surface.

For a given initial line, as the mirror point is

increased it is seen that the McIlwain 25 "L" parameter

remains constant to within 6_ only closer than 7 earth

radii to the earth. As distances are increased in the

subsolar direction, L becomes a strong function of

mirror point varying as much as 55_ along the same line

of force in the tail of the magnetosphere (about 26 earth

radii out). That L should be approximately constant along

a line of force is much poorer an approximation than the

fact that _ is an approximate constant as a function
c

of particle mirror point° We see from the figures that

h e = constant (the first order correction to _c =constant)

surfaces only split to a maximum of 5_ in the 26 earth

radii tail of the magnet.spheric models. Notice that

this argument remains valid so long as the invariant sur-
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faces remain within the magnetospheric boundary. Once

the invariant surfaces pass beyond this point the shell

concept loses meaning. That the Mcllwain parameter

does not remain even close to approximately constant (_ 50_)

as a function of mirror point in the tail of the mag-

netosphere is not very surprising. Mcllwain showed that

there exists a relationship between L and I which depends

on Bm. Since his analysis defined L like RD of the di-
o

pole field, there no reason to think that fields that

severely diverge from the dipole have an equitorial

parameter which remains constant as a function of the

mirror point along a line of force.

The equatorial energy splitting is of the order

-4
i0 earth radii for up to 500 mev particles and is there-

fore not shown in these figures.

(ii) Cosmic Ray Cutoffs

The ver Zical cutoff rigidity of Cosmic Rays was

calculated at various locations on the surface of the

earth using equation V-(41) in a Finch and Leaton 7 field

model. The calculations were performed on the Cornell

Control-Data 1.604 computer. The results are tabulated

in Table II along with those results of Ray, Shea _6, Dropkin,

Quenby and Wenk 37 and modified rigidities for the I.G.Y.

46
Shea's results were found by simulating the trajec-

tories of charged particles on a computer using the Finch and

Leaton 7 field model. Ray obtained his

6
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results by, first, using

147.

Rvert. cutoff (1)

where "L" is the Mcllwain parameter calculated at

the point, on the surface of the earth, of impact.

Second, and more correctly, then by using

Rvert. cutoff : 1_.9 I_.9 2 %vB) (2)_2 _7-( l- r
C

where now L c is computed at the guiding center of the

particle at the time of impact. Dropkin, again, simulated

particle trajectories at the Goddard Space Flight Center

and computed cutoffs from St_rmer Theory.

In Table III the percent disagreement between

the present results and those found by other authors

has _u_ +_7_ed_____,, . It will be noticed that the present

cutoffs best agree with the results of Shea 46 and

Quenby and Wenk 37, an_ least agree with the results by

Dropkin. Particularly poor agreement is found at

Brisbane.



I_8. "
t

_t

H
H

H cb
t-4

r..O

H

d
H H

H _

0 0

(.)

< _
o _
H _
B

S _
v

_J

0
t-4
Eq
<
E_
[s]

O0 0 r°', 0 _ [--..-. i'r_ ",..0 I-_ O0 0 k.O 0 r-I L_

_ _ _, _ _ _ d_d_ _ _ d _ _ _ _ o_
r-I ,--I ,'--! rl H H ,--I r-I H H r'-! H r-'t _-4 H

CO I I I I _ I I _ _ _ _ I _ i I

i i l l r_ l l j lr__ I 'I I I i I I _ _ O,J I I I

o r_ _ O_0_'..0 0_00 O_O_U--_O0_00

M_dddJ_M_- _co_o Jd_i
,-.-I r-I H ,--I r'-I r-I rt ,-_ H ,--I r-'l ,-4 r-'-! ,--I

0", kO r-t r"p', _ LYh 0 k.C) Lfh LCh Oh tYh (hi Od _ O0

o-,_ o _ _ _o _ _ o _ _,..o,.o--.-.¢ o

,-t ,--I r-I r-'l H r--I H ,--I ,-1 H r-t ,--t ,--I H

tO kO kO b"- CO H CO LO Lq I'P,, ,-4 Oh 0 H L(h I.o,,

o _ _ _ _-o _ _ _ _ _.-.* a-,_ o'-,

I I I I I I I i



,l

1119.

H
H
I--I

E--t

r._b
I--t

£
0
P_

b_ °h

0_J
O_

v

_J
A

o
H

09

_ _ _o 0_ _ _- o _ _ _-_0 _ _-_o
4# d ,-4 _ d _ _ ,-q 'J co o K,-,_ ,4

H

I

I

i i I O i I r'-I _ O kD i _ I l
I I I o i I I i I

I I i 0 I I r_l _ Od r_l I l_ I I

I I I I I r--I I I I

-.N- _ _-..¢ _-,..o o _ _ o o _ o o0o

i-I r-I o.l r'-I r--t H

-¢,,.o _ _o o o _ _ _ _ _-¢ o-,

b--- 0,! H b- L(h b-- <0 Oh b- O H LD _ LG I>- L0

_ co _ _0o _ o K _.--¢ _ ,--i _ _ _ _

o _ r", _o _ _ _ _ _.--.¢ o'-,_ o-,

o.I G.I ,-I _ oJ H H H I ,--I G.I 0d OJ 0J
I I I I I I I I

H

_ _ r_ ,-_ 0 E_

0

o_ _ _o
0 <_ _ _ _

._ h ._ _ _ :_ _ ._c o _ e ._ o .,-4 _

o

0

&

Oh

OJ

0

Oh

OJ

0

_>_

%-%r:q
p_

_o

OH
E_



_v-iii) NECESSARY CONDITIONS FOR

THE EXISTENCE OF A ST_RMER INTEGRAL

t,

5 •

We will now derive the set of necessary conditions

that a static magnetic field must satisfy in order that

a St_rmer Integral 38 exists. That is, we will derive the

set of conditions that must be satisfied by the magnetic

field such that there exists an _, _ describing the

field, that leads to the conservation equation (or

first integral)

where

+ at
dt --o (1)

-_ mc -_ --_

at = -_v x B (2)

A consequence of (i) will be that _c (at the guiding

center) will be a constant of motion for sufficiently

!
low rigidity particles.

Let us proceed as follows. For a given magnetic

field, B, select any convenient function which is constant

along lines of force and call it "_".

differential equations

B = V_ x V_

From the partial

(3)

we may then solve (in principle) for the corresponding

"_" Furthermore from the partial differential equations

B :w (4)

we may solve for the corresponding "V". We now have a

description of the field in terms of _, _, V. We further

15o
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_o _o

assume that this description has led to a non-vanishing

_ and hence the corresponding canonical momentum

p_ is not a constant of the motion.

If there exists another description of the same

magnetic field _, _, V such that p_ is a constant of the

motion it must be obtainable from the old description

by a point transformation (canonical):

: _(_,_,v) (5)

= 6(_,_,v) (6)

v = v(_,_,v) (7)

which is clear since all fields must be described in

terms of coordinates only.

Assume that we have found such a description

_, B, V and _ = O. The necessary and sufficient

conditions for this are

2  lv -I 2= - - o (s)

Intuitively _ and _ in (5), (6) cannot depend on "V"

because they must be constant functions along lines of

force. Although _ _ are constants along a line, V is

not, and any dependence of our new _, B on it would

destroy its invariance. We may prove this more

rigorously as follows° From (5)-(7) and the chain rule

we have
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V_ = _ V_ + V@ + B

- _ w + _ vB + _ _
v_ --_-_ _ _-_B

(9)

(io)

B= w =_-_w + _-6v_ +_-_B (ii)

Since V_, VB, V_, and V_ are perpendicular to B, we

may dot _ into both sides of (9) and (i0) giving

_ _ = o (i2)
y# = y#

Furthermore, we may satisfy (ii) by simply making

the identity transformation for V, ie:

v-- v (13)

However, _ and @ must, in addition satisfy the same

equation (3). Using (9) and (iO) we then must have

B = W x V_ = (_ _ - _ _) W x V_ (l_)

so that the Lagrange Bracket (Jacobian) of the trans-

formation must be unity•

We conclude that, if a transformation exists that

_@_ _ - 0 then it musttakes _, B, V_ / 0 to @,@,V, _@

necessarily satisfy
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= _(_,_) (16)

= _(_,_) (17)

V = v (selected) (18)

1 . (19)

The necessary and sufficient conditions on the

magnetic field can now be obtained from (8). First,

consider the function 9(_,_,V). From (16)-(18) we then

have, by the chain rule

_(_,_,v) _ _ _ _ _+ (20)

We may now express _-_ , _ , _ , _-_ in terms of

O_ u_
btl_ O

_-_ , _-_, _-_, _-_ . To do _ we simply take -- of both

sides of (16), (17)yieZdin¢

__

(21)

= + B_ -
I _-_ bF " _P

Using Cramer's rule and (19) then gives



154. ."'°

(22)

I"

whereupon placing this result back in (20) expresses

the partial derivative of _(_,_,V) with respect to _,

by its partial derivatives with respect to _ and _.

It follows

38 c_,6

From (9) and (I0) we then have

_(w.v_) (24)

(25)

Placing these in (8), using (2 :_.,,•we have the conditions

,,_-_J_l_-,_I_1_+2 (w. v_ )_--_

[_,B] _,p = 0

_,_] = i

_] = (26)
0

o_,IB

_*1 = o (2_)

(28)

(29)
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We may rearrange (26)-(28) into another form by noting

the Poisson 12 Bracket _,_ 0 and = 0

imply _,C_,_= 0. 36 We may then replace (26) to (28) by

B' r'2 I 2+2

=o (30)

=o (3z)

(_2)

Our first condition on the magnetic field can be obtained

Solving (32) for _ in termsby combining (30) and (32),

_ aB _B
of _-_, _-_ , and _-_ and replacing the result in (30),

we have• after some algebra

('_-J -'_J l_r_l2+(_'vr_)_ _- )( = o
' I_B_2

L _-_J c_,_

If we define a unit vector _B in the _ direction and

use the chain rule on B(_,_,V) we have the identity

which we may replace in (33) to give

_Y_JJ

= 0 (35)

(3_)
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12
Now, expanding the Poisson Bracket (35), yields

(36)

However, the second term on the right hand side of (36)

is zero. This can be shown by, again, expanding it, ie:

E iFB V / = (_)2 (_)-2 + ,aB,2
I _ '_/

( 37

That the second term on the right of (37) just cancels

the first is clear from the following

= 2(_) ,

c_,lB

2(;3cz) (3B _3 /_3_"_T6.tB-.B-j -
cz,B

(38)

Now take R from (32) and place it into (38) to give

- aB B

(39)
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The right hand side of (39) is equal and opposite to

the first term on the right hand side of (37). Hence

our first condition takes the form

_B, IVBI2- (_ " _)_ = 0 . (40)_,G

Recall the equivalences cited in Appendix II,

(41)
V_xB .... V

_ =---B2

Our condition (40) then takes the form

B2 - 22

(43)

This condition may be reduced to a much simpler form

after a great deal of vector algebra and use of (3).

The result is

]o
or

(_-)
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This is the sufficient condition we have been seeking.

The magnetic field which satisfies this condition has,

as a consequence, a representation _, _, V of such a

form that _ - 0 The . i
• recelpe for finding such a

representation is as follows Define any "_" say as

some function of the minimum value of magnetic field

along a line of force of the field. Solve equation (3)

which gives us the corresponding value of _. We may

now invert these expressions to give, say, the cartesian

coordinates as a function of _, _, V. Then all the

field variables _, _, _, may be similarly expressed•

From equation (32) we may now solve for _(_,B) which

may then be transformed to _(x,y,z), and from (31)

we may now solve for _(_,_) which similarly be trans-

formed to _(x,y,z). The new a, _ just found in addition

to V = V are our new representation which lead to a

Lagrangian that is independent of #

An example of a field that satisfies (44) is

the dipole field 1-(48) for the term B x VB is in the

direction so that _ of the curly bracket is zero,

which of course is as it must be since all variables

within the bracket are independent of _ and therefore

have a zero derivative with respect to _.

• o t-
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APPENDIX- I

The Lagrangian for a relativistic charged particle

in a static magnetic field is given by 12

where

_ mo 2 qA- v
r _ c + (I)c

i

T - 1/2(1-_2)

°o T.

_°

= V/C

mo = rest mass

A = magnetic vector potential

q = charge (cgs units)

c = speed of light

V = velocity

We will now proceed to show that the equations

of motion arising from (i) are the same as those arising

from the Lagrangian

where

_ mv

2 + (2)C

m = mot = mass = constant of the motion

provided we treat m as a constant (ie: m = 0).

Since (i) and (2) differ only in the first term

i6o



on the right hand side, which is strictly a function of

speed, we may rewrite both equations as

= -m o2(1-_)I/2+ _(?,_) (i')
0

r C

= m v2+ _(_',i") (2,2

It is then clear from (i'), (2') that

_r _ _ _ _(_,_) i = 1 2 3 (3)
_x. _x. ;Sx. ' '

1 1 1

So we must proceed to show

/ ' ' (_)

in Order that Lagranges equations be equivalent.

Since xi is no more than vi, we may now form,

from (1'),(2')

m v. _[(_,_)
r _ o i +

_V i (1_v2/c2)i/2 _v i
(5)

6£ - my. + (6)_!_,_)
_V i i _ _o

(6) becomeThe time derivatives of (5),

i

(lo)
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(1_v2/c2)l/2+ Y[ i

The only difference between (I0) and (Ii) is in

the term

d (l_v2/c2)-l/2
moVi dt ' (12)

but this term is clearly zero since the speed of particle

in a static magnetic field is constant, and thus the

time derivative in (12) is zero. Hence the Lagranges

equations coming from (i'), (2') are equivalent and we

may replace (i) by (2) provided 'm' is treated as a

constant (ie: m = 0).
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APPENDIX - II

We will now proceed to compute the Lagrangian,
_he

in v_, 6, V coordinate system, for a charged particle

in a static magnetic field. The derivation fills in

the omitted steps in the paper by Ray. 38

From a previous Appendix we have established the

Lagrangian of such a particle as

f m 2 _ v.A
=_v + c (l)

where m = mot and is a constant of the motion.

Let

_l = × _2 = y _3 : z

'rll = c_ 'rl2 = 62, h3 = v

(2)

We have a point transformation relating the _1_s to

Y

the hj s. Ie:

_i = _i(hj ) i,j = 1,2,3.

The time derivative of (3) then becomes

(3)

3 a_i

j=l

(_)

So that the kinetic energy term of (I) becomes

_=_ _=-i j--i j'=l •

163.

(5)
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Furthermore the remaining term takes the form

3

- .(6)
c c i=l i=l j=i

Placing (5), (6) in (i) our Lagrangian becomes

2"j--:Lj_1 ,f-_i_H_j -_j, c j=iLt,-_1 _l_j

(7)

where now _ is considered a function of qj only. All
_a

that remains is to express the _b's in terms of the

_qa'

_b' 's. This can be done as follows. By the chain

rule, we obtain from (3)

3

d_ i = _ _i d

j=m _j 4j

i = l,_,} (8)

or, conversely

3

dq i =_ _i'
, _ d_j,

j'=l

Placing (9) in (8) we obtain

i, = 1,2,3 (9)

0o)
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However, because the _i are independent variables, in

(i0) we must have

3 _i _4j

The solution to these 9 equations (II), is given

by Cramer's Rule as

B 9_
m

(12)

where l,m,n and i,j,k, independently take on cyclic

numbers. Also q and r are cyclic permutations of p.

Employing (12) we then find, omitting some algebra

_ (v_ × 2)_ _y _ (v_ _ _)y _ _ (v_ _ _)_
_- __ _ _ B2 (13a)B2 o_ B_

_ (_ _ w)_ _y (# _ w)y _z (_ × v_)_ Z- (15b)
= B2 ?_ B2 )_ B2

_x _Bx _y _ _By _z _Bz
- (13c)

Let us now define the matrix element Tjj, as
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(l_)

where i,j,k; i _ j' k', , ; l,m,n; p,q,r are to be taken in

cyclid order. The elements of (14) may then be evaluated

(we have used facts that V_ x V_ = _) and tabulated as

follows

I

T

_ (w.vB)
B2 B2

0

(w-vS) lwl 2 0

B2 B2

0 0

--2

B2

(15)

Furthermore, we may, in the same manner evaluate

3

Z
i=l

A - = 0; .
i _-6 B2 z _5 B2

i:l

3

agi 7_-'._ o (16)
Ai _V - B2 =

i=l

Placing (15) and (16) back into equation (7)

we thus finally obtain
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m i Iv_l 2 .2 !wl 2 _2J= _ B2 _ + B2 -

167.

Z(w._)B2 &_ +(7) v

+ _ _ (17)
C

In equation (17) the mass 'm' is the relativistic

mass, and all variables are assumed a function of

_, _, V. The gradients of _, _, V may be performed in,

say, a cartesian system of coordinates and then substitute

equation (3) into the result.

The previous derivation may, in addition, be

applied to derive the following relations between

derivatives in the cartesian/spherical coordinate

system to that of the _, _, V system.

Consider the function f(_). Let us proceed to

_f _f _f
compute the partial derivatives _-_, _-_, _-_. We have, by

the chain rule,

3
hE

_f - __L _f
_ni j=l _ _ni

(18)

Therefore we may now substitute (12) (or (13)) in (18),

where upon we have, after some algebra, the result

af (v_ x S).vf
_-_ = B2 (19)

_f (_ x w).vf
y_ = B2 (2o)

E

_f _ B'Vf f
- _21)

_-V B2
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(19) thru (20) are very useful in simplifying

rather large vector expressions.

I"



,o

APPENDIX - III

We will now show that it is always possible to

find a vector potential to describe out static magnetic

field that satLsfies the gauge _.B = 0.

Consider any arbitrary vector potential _'

B = V x A'

which is no more than a set of three partial differential

equations from which B can be obtained given A' However,

the vector function A' is not unique.

function Y such that

A = A' + VY

satisfying

(1)

Define an arbitrary

(2)
0bviously37 A also satisfies (i), and we may further

make the restriction that

_._B : 0 (3)

whence from (i) we have

A'B : 0 - A''B + B'VY (4)

Equation (4) is a partial differential equation for

'Y' which, once satisfied, can be used back in (2)

to generate the vector potential A which satisfies

the desired gauge (3).

169
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."

The following relationship was noted by Hassit 13.

A slightly different proof is given below.

Consider the coordinate system set up at any

arbitrary point in space shown in figure 35.

We have

v_._--0 (1)

therefore V_ must lie in the V_, B x V<_ plane. However,

the change in _ in any arbitrary direction, ds, is given by

d_ : VB'd--_ (2)

If we choose ds in the B x V_ direction ie.

--_ B x V_
ds = B_W_ ds (3)

then (2) becomes

vB.(S x w) B (4)
d_ : BIV_l ds- IV_1 ds

We may therefore calculate the total change in

between two points in space by integrating the function

B

LV_I (expressed in, say, cartesian coordinates) along

the curve traced out by the curve formed in the B x V_

direction. The obvious advantage of this, is that we

now have a recipe' for computing changes in @, which is

normally a very complicated solution to a set of partial

differential equations.

170
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APPENDIX - V

In this appendix we will prove the assertion 38

that a field with no variation of magnetic field along

limes of force lends itself to choosing _ = f(B),

that is a function only of the magnitude of the magnetic

field intensity. The proof is as follows:

Assume

B = B(x,y)e z (i)

and _ must then satisfy

w x v_ = B(x,y)_z (2)Q

However', because of our above assumption _, in addition,

must satisfy

= f(B) . 3)

Placing (3) in (2), gives us the set of partial

differential equations that _ must satisfy

B(x,y)e z = f'(B)(VB x V_) 4)

That is, we must have

_B $_ _B _

_B _ _B _ 5)

B(x,y)= f,(B)(_ yj _ _)

Excluding the uniform field (_-- constant), the first

two equations of (5) imply (using the general form (i)

for _)

172
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= B(_,y) . (6)

Placing this result back in the third equation of (5)

we ha ve

B(x,y) bB(x,y)b_(x,y) b_(x,y)b_(x,y)
f' (B(x,y)) = hx by - by bx • (7)

Equation (7) is a partial differential equation for _,

which can, in principle, be solved once the field

B(x,y), and the function f(B) is prescribed. The con-

clusion to be drawn from this proof is that we may always

describe any field B(x,y)e z by the variables _(B), _,

V. This configuration has particular merit for equatorial

trapped particles in models of the magnetosphere

(ie. Hones, 15 Mead26).
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We will now prove that it is always possible to

select an _', _', for a field of the form B = B(x,y)e z

such that V_'.V_' = 0.

To prove this, consider a region of space where

the currents are everywhere perpendicular to the static

magnetic field. We assume

E= 0

( )"B = B x,y e z

8B
_-_=0

J.B=O

(i)

(2)

(3)

(4)

It is always possible to express such a field by an

_, _, V such that I

A = _V_

B = _V

Here we assume that

(5)

(6)

(r)

(8)

and will show that for a field of the form (2) we may

always make the point transformation

_, = _, (_,_)

_, = _, (cz,_)

V' =V

_' =_

(9)

(io)

(il)

(22)

_Q
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so that the new variables satisfy (6) and (7) with the

_', 6', V' replacing _, 6, V and further with

w,.v_, = 0 (i3)

By the chain rule for differentiating an implicit

function we have, using (9) and (i0)

V_' 8_' 8_'
= _ w + _ v_ (14)

= _ya-w + _y_- (15)

Therefore we must find the transformation (9) through

(12) satisfying

8_' 86'
Va''V6' = 0 = aT&---_--

8c_, 8fB, Iv_l 2IVd 2 + _ +_B-a--_B_- +_ga---_B-g-jv'_ "r"

and

V_' x V6' ,8_' 86'
=vaya---_

(16)

ac_ ' x v6 = rot x v_ = _ (17)

All we need find is a sufficient set of conditions such

that (16) and (17) are satisfied and our task is completed.

From equation (17) it is clear that we must

demand that the Jacobian of the transformation is unity.

Te :

j _czT ,_I ,VV _ 8c_ I 8_ T 8c_ t 8_ I

_ ]_,_,v = _ g_ _ _ - I (18)

Also, since V_'V_ / 0 we may satisfy (16) sufficiently by

demanding
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and

_' _' _'_,
_---d-_b---_-+ yB.._--.E -o (20)

We may now treat equations (18) and (20) as two linear

equations for the partial derivatives _-_ , _ in terms
8c' _'

of _-_ and _-_-. Using Cramer's Rule and omitting algebra

we obtain

aB' _ 1 (21)
_ 2(_,/86)

_B' _ 1 (22)
_p 2 (_,/8_ )

therefore
We may now replace (21) and (22) in (19) and _ trans-

formation (9), (i0) must satisfy the partial differential

equation

_' }Val + 8_'_ _ Ivfsl = o (23)

The solution of (23) for the _' (_,B) may then be put back

into (21) and (22) to find 6'(a,p). Therefore we may

always find an _',6',V' describing the field (2) that

also satisfies 2c' "V_' = O.

A simple example will demonstrate the procedure•

Consider the uniform field of unit magnitude•

S = e (2_)

One description of this field can be found by selecting
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o_=x +y (25)

: y (26)

v = z (27)

F= l . (2S)

(25) through (28) will generate the proper field (24),

satisfy the gauge A-B = 0, but give V_.V_ _ 0. However,

according to (23) the transformation we need to make

2_'-V6' = 0 is the solution to

)l/2 _o_' _c_'(2 _-_ + _-= 0 (29)

This is a linear, homogenious partial differential

equation of the first order that may be solved by the

method of characteristics to yield the general solution

_, : _,(_ + _) (3o)
-,/2

where c' is an arbitrary function of its argument.

simplicity, let us select the solution

For

_' = B + _ (3l)
,/2

Returning to (21) and (22)we then find, corresponding

to (31) we have

6' - + 6-- + c (32)
2 J2

Replacing _, 6 in terms of x,y from (25), (26) we finally

obtain

xc_, = + (l+_)y (33)
`/2 g_
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@, _ X + @/S - l)y
2 2

(3_)

A quick check will demonstrate that V_''V@' = 0 and

_', @' of (33) and (34) will generate the given B

field, (24).

°

°
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Pm,n(COS@) :

APPENDIX - VII

m_o

_(cos_) m=O

where Pm,n(COS@) are the Schmidt-normalized associated

Legendre functions _efined in terms of the conventional

Legendre-functions given by

F_(oos_)-
sinm@ tin+re(cos2 0 _ I) n

2 n n: d(cos_) n+m

179



TABLE IV

P_ (cos_) _-Z
v,O

PI,O cos@) = cos@

PI,I (cos@) = sin@

P2,0(oos_)_-(z/2)(3_os2__z)

P2,1 (cOs@) =_/3 sin@ cos@

P2,2(oo_0) = (,/3/2)_i_2e

P3,o(COS_) = (z/2)(Scos3___cos_)

P3,z(c°s_) = (U6/4)(Ssin_ cso2__sino)

P3,2 (c°s_) = (,/zS/2)sin2_ cos_

P3,3(cos_) = (v/zo/#)sin3e

P#,o(COSg) = (35/8)co_@e_(15/#)cos2@+(3/8)

P#, l(c°se) -- (v/lO/#)( 7sin_ cos3e-3sin_ cose)

P8,2 (c°sQ) = (v'5/8)(Ysin2e cos2@_sin2e)

P4,3(c°s_)= (dTo/_)sin3e cos_

P_,4(cos_) = (,/35/S)sin_

SS,0(cos_) = (6_/8)cosSe _(35/_)cos3_+(zs/8)cos_

P5'l(C°S9) = (v/lb/8)(21sin@ c°s4@-Tsin@ cos2e + sin@)

P5, 2(c°s@) = (_/105/4)(3sin2@cos3e-sin2@ cos@)

P5,3(cos_) = (v/FO/16)(9sin3e cos2e_sin3e)

18o

q,



P5,4(cos@) : (_/_/8)sin4@ cos@

Ps,5(oos_): (_/zB)sJ_nS_

PB,o(OOS_): (231/16)co_60-(315/16)cos%+(z05/16)cos2_-(1/i6)

PB,l(OOS_)= (_21)((33/s)_J__co_5o-(15/4)s_ co_3o

+(5/8)si_ocos_)

P6,2(cos@) = (_/210)((33/32)sin2@ cos4@-(9/16)sin2@ cos2@

+(1/32 )sin2@)

PB,3(oos_): (_/16)(_lsin3_ oos3_-3sin3ooos_)

P6,$(cos@) = (v_/16)(33sin4@ cos2@-3sin4@)

P6,6(coso)= (_/32)sin6o
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TABLE V

°. Q°

YO,O @)

YI,0 @)

YI,I @)

Y2,0 @)

Y2,1 @)

Y2,2 @)

Y3,o 0)

Y3,_(_)

Y),2 (°)

Y3,3(o)

Y_,o (_)

Y_,z(_)

Y_,2(_)

Y_,3(_)

Y_,_(_)

Y5,o(_)

Ys,z(°)

Y5,2(o)

Y5,3( @ )

= 0

= -sin@

= COS@

= -3sin@ cos@

--_(2oo3_-1)

= _sin@ cos@

-- -(15/2 )sin@ cos2@+(3/2)sin_

-- (_/6"/4)oos%-(_/2)sin20 oos_- (¢'g/_)oo_0

-- ¢i-¢(si_0 oos2_-(J_/2 )siPS)

= (Vi-e/_)s_2_ oos_

= (i/2)(-35sin@ cos3@+15sin@ cos@)

= (Vfi-_/4)(7cos4@-21sin2@ cos2@-3cos2e+3sin2@ )

= (V/P/2_7sin@ cos3@-7sin39cos@-sin@ cos@)

= (_/_)(3_2o _os20-s_o)

= (_'y2)(sin3@ cos@)

= -(3__5/8)si_ cos4_+(]_05/a-)sj__0 oos2_-(zS/S)si_

= (¢T9) (-(_Z/2)sin2_ oos3_+(2Z/S)oos5_+(?/_)s_-n2_ _ose

-(7/4)cos3@+(1/8)cos@)

= (_6-_)(-(9/4)sin3@ cos2@+(3/2)sin@ cos4@ +

(z/_)siP_-(_/2)sin_cow'G)

= (v_7"-_)( (27/16)sin29 cos3e-(3/16)sin2@ cos@

-@si_ _ oo_)

(VT_)((3/_)si.%co_2_-(_/s)siPe)

]_82
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Y5,5(o)= (l_/zB)_in_ oo_

Y6,0(@) = -(693/8)cos5@ sin@+(315/4)cos3@ sin@-(lOS/8)sin@cos@

Y6,1(@) = (v_((33/8)cos6@-(165/8)sin2@ cos4@-(15/4)cos4@

+(45/_)_in2_oos2_+(5/S)oos2o-(5/S)s_2o)

Ys,2(o)= (V_f_)((33/_S)s_nOoos5_-(33/S)s_n3_oo_3_-

(9/8)sin@ cos3@+(9/8)sin3@ cos@+(i/16)sin@cos@)

Y6,3(@) : (_/16)(33sin2@ cos4@-33sin4@ cos20+3sin4@-

9sin2@ cos2@)

Y6,4(@) = (_)(-(33/8)sin5@ cos@+(33/4)sin3@ cos3@-

(3/4)s_n3ooo_)

Y6,5(o): (_/i6)(-3s_nBo+_Ss_n_ oos2_)

Y6,6(@) = (_/16)(sin5@ cos@)
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GAUSSIAN CO _T_VE_m° _ .......

Tabulation of the Gaussian coefficients for the geomagnetic

field. Taken from Finch and Leaton.7 A geo@raphic

coordinate system is assumed. All coefficients are in

gauss.

Table VI

o l 2 3 4 5 6

m

O. 3055 gn1

3

4

5

o.o152

-0. 0118

=o.oo95

O. 0027

-0. 0010

0.0227

-0.0590

o.o191

o.oo45

-o.oo8o

-o.ooz5

-0. oo32

-0.0002

-o.ooo5

0.0002

-o. o158

-o.oo24

-0.0126

-0.0029

-0o 0020

-0.0010

-0. 0002

-0.0011

-o.oo91

o.ooo9

o.oo38

o.ooo4

o.ooo4

o.ooo5

o. oo2 4

0.0000

-o.oo31

o. oo17

o.oo15

o.oo14

o.ooo3

0.0001

o.ooo7

-o.ooo9

0.0000

o.ooo3

h m
n

0.0011

0.0001

184
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GAUSSIAN COEFFICIENTS (GEOMAGNETIC)

Tabulation of the Gaussian coefficients for the geomagnetic

field. Coefficients obtained by a linear transformation

relating the geographic coordinate system to the geomagnetic

coordinate system. Calculations performed by the author

on the Corneil-Control Data 1604 computer. The following

coefficients apply in a geomagnetic coordinate system.

All coefficients are in gauss.

Table VII

0

i 0. 3120

2 o.oo49

3 !-0.oo89

4 -0.0082

5 o. o017

6 -o. 0002

i

0.0000

0.0000

-0.0288

-0.0228

0.0115

o.o166i

o.oo51

-0.0100

-o.oo14

-o.oo3o

o.oo16

-0. 0002

2

o.ol93

-o.oo43

O. 0107

-0.0111

0.0001

-O.OO25

O. 0027

0. OOO6

-0. 0017

0. OOO6

o. 0o57

O.OO55

-0.0032

o.ooo6

-o.ooo6

-0. 0012

-0. 0007

-0. 0020

3 4

0.0023

0.oo34

o.ool8

-0o0012

0.0004

o.ool8

5

-0.0001

-o.ooo6

-o.ooo8

-o.oo13

6

g,m
n

h ,m
n
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MEAD MODEL OF MAGNETOSPHERE

Tabulation o? the Gaussian coefficients for Mead model of

the magnetosphere. South magnetic pole points at the

north star, while azimuth is measured positive east of

the sub-solar point. All coefficients are in gauss.

0
gl : 0.3120

• I

Table VIII

n<<
i

5

6

O. o072m

lO-5

I

-0.028-Ox

-6
10

0. O013x

l0 -8

2

O. 0233x

10-5

O. O108x

10-7

-O.O016x

-6
I0

-O.O019x

lO -8

O.OOlOx

lO-7

6

_-m
gn

HONES MAGNETOSPHERIC MODEL

The Hones 15 model assumes two dipoles, one 28 times the

strength of the other, placed 28 earth radii apart. The

smaller dipole has the strength of the actual earth dipole.
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The magnetic scalar potential for this field is given by

re 7 (_2 +784- 56T sin@cos_) 3/2

V(r,@,_) is in gauss rwhere r is in earth radii, . =
r e
e

6317.2 km. @ = collatitude, _ = azimuth. Again the

magnetic south pole points at the north star and azimuth

is positive east of the sub-solar point.
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_DIX- IX

Define the function <(a2 q2) as

(a2+_2)n " (z)

We Will first evaluate Foi(a2 q2) and FjJ(a2 q2), from them

we wiii be able to generate aii the functions that will
be needed, So we have

1

In addition we have (2)

i_#(a_'q_)-- o _ _ "f=

Make the Substitution _ = qcos@ and this becomes

= sin2@ d@

•_ • gq )+cos @
cos-l(i/q)

Or

We may then generate the remaining functions

())

189
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%1(_2, q2)=(I/2 )
/

i 2 q2%(a , ) = _/4

(q2 i)z/2+q2z __z(i/q)l

l(a2 qe)=F 1 ,
a

(_2+q2) z/_-]

(5)

+ eos-l(i/q )

2
q

F} (_, q2)_

F (a2,1)= __ -i

%(_e,q2)= _ _ i 2 q2aa2 Fi(a ,

(6)

(r)

2a a' (l+a 2 )
(8)

i a 2%( ,i)-
_ 3(1+_e-77_) (9)

Fol(a2,q2)=2 _o(Fl(a2 q2 )=sln_i(i/q)
_q_ u ' (io)

%i(_2,i) = _/2
(ll)

I} -tan-lfa_q2-1)i/2_]

Fi_(_,q 2) _

(z3)
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APPENDIX - X

In this appendix we will establish that "_" is

a non-decreasing function along any "_" surface, and

therefore an appropriate variable for measuring distance

along the curves which are formed by the intersections

of constant "_" and constant "V" surfaces.

We assume (true for all real magnetic field

models of the earth) that the magnetic field is continuous

and single-valued in all of space, and may be expressed

in the form of 11-(16). With the choice of _ being some

function of the minimum value of the magnetic field

along a line of force, the surfaces of constant _ will

be shells made up of lines of force, concentrically

arranged, about the origin (the earth). The surfaces

of constant V will intersect the surfaces of constant

along space _urves. Fields which display axial

symmetry will have their magnetic fields constant in

magnitude along these curves (see figure 36). Since

is constant along lines of force, it is somewhat

intuitively obvious that its changes in azimuth should

be some measure of the azimuthal angle (see figure 36).

Consider a space curve made up of the intersection

of an arbitrary constant _ and constant V surface as

shown in figure 97_the curve need not be planar.

_ 191



192. ._:.

%

lines of

Constant

llvll

curves
of

constant
Ilvll

Constant

II _ |1

curves

/

gin

Constant "Cl "
surface

_'_ 36_ i k_U r @



-o 4

193.

b

figure 37

a2

C |

figure 38

B,
b'

..... 4" b
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figure 39
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Two lines of force pass through "i" and "o", respectively,

in the above figure. The values of _ on these two lines

of force are _o and _ respectively. Starting with _o

we may generate _17 o+_r va±_ of _ along this curve

by 13
i

- % :]o dx (i)

_-_ B x V_
where dx - B dx is the unit length along the curve

formed by constant "V", constant "_". From our assumption

given on previous page_B is positive semi-definite and

continuous, however, "IV_I" need not be continuous

although it must be positive semi-definite. This is

demonstrated by the "kink" in the above contour, "b"

At this point the V_ changes discontinuously. The

distance "dx" is non-decreasing and it therefore follows,

that "B" must be a monatonically increasing function of

"x" even over discontinuities in the integrand (ie. at b).

This is clear from the fact that the integrand, although

perhaps discontinuous, is always positive semi-definite,

ergo, the integral is non-decreasing. This, however, is

not enough if "_" is to qualify as a measure of length.

In fact, it must be the case that _ be a "strictly

increasing" function of azimuth. That this is indeed

the case may be shown as follows.

Consider the shaded area between two contours

of constant - V, constant - _ (shown in figure 38).
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Assume that the two surfaces bounding the shaded area

have the same value _i" (The case if _ is simply non-

decreasing). _ must be constant and equal to _I

along the entire length a-b and a'-b' This follows

from the above where we showed that _ is a non-decreasing

function of "x". We may now map b'-a'-a-b-b' onto the

_-_ plane (see figure 17). The flux linking the hatched

area of figure 16 is given by 33

S S

where dS is normal to the hatched area and dl is along

the contour b'-a'-a -bab'. However, from 1-(3) _ = aV_

so that (2) becomes

= #_V_._-_ = f _d_ (3)

where (3) is no more than the area enclosed by b'-a'-a-b-b'

_n Noting from the figurein the _-Z plane of figure w_.

that this is zero, we conclude that the arbitrarily

selected hatched area of figure 38 encloses no flux.

Since the real geomagnetic fields we will be treating

have no flux free regions in space, we conclude that

the case arising in figure 38 never occurs and therefore

is a strictly increasing function indeed. We may

therefore choose _ as azimuthal measure of "distance".
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